太原周边农田雨季硫氮湿沉降特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Sulfur-nitrogen Wet Deposition in Farmland around Taiyuan during Rainy Season
  • 作者:梁亚宇 ; 宋志辉 ; 李丽君 ; 白光洁 ; 吕薇 ; 刘平
  • 英文作者:LIANG Yayu;SONG Zhihui;LI Lijun;BAI Guangjie;L■ Wei;LIU Ping;College of Biological Engineering,Shanxi University;Monitoring Station of Xinghualing Branch Bureau of Taiyuan Environmental Protection Bureau;Institute of Agricultural Environment and Resources,Shanxi Academy of Agricultural Sciences,Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province;
  • 关键词:氮硫沉降 ; 浓度 ; 沉降量 ; 降雨量
  • 英文关键词:nitrogen and sulfur deposition;;concentration;;settlement;;rainfall
  • 中文刊名:SXLX
  • 英文刊名:Journal of Shanxi Agricultural Sciences
  • 机构:山西大学生物工程学院;太原市环保局杏花岭分局监测站;山西省农业科学院农业环境与资源研究所山西省土壤环境与养分资源重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:山西农业科学
  • 年:2019
  • 期:v.47;No.399
  • 基金:山西省财政支农项目(2015ZZCX-13,2016ZZX-13);; 山西省回国留学人员科研资助项目(2016-133);; 山西省留学回国人员科技活动项目择优资助项目
  • 语种:中文;
  • 页:SXLX201905039
  • 页数:5
  • CN:05
  • ISSN:14-1113/S
  • 分类号:184-188
摘要
为了解太原市周边典型农田区大气氮硫元素的沉降特征及其来源,于2016年6—10月在山西省农业科学院东阳试验基地进行了湿沉降监测。结果表明,降水中SO42-S,NH4+-N,NO3--N的加权平均质量浓度分别是11.84,2.72,0.85 mg/L,沉降量分别是34.50,7.93,2.47 kg/hm2,SO42--S沉降量分别是NH4+-N,NO3--N的4.3倍和14倍,硫沉降占总沉降的77%,无机氮占23%,无机氮沉降中NH4+-N所占比例较高;SO42--S与NO3--N的质量浓度和沉降量分别呈极显著和显著线性相关,相关系数分别为0.688和0.619,说明二者有相同的来源;降雨中SO42-/NO3-和NH4+/NO3-的加权平均浓度比值分别为13.94,3.20。该地酸雨类型主要是硫酸型,氮沉降以农业排放源为主;SO42--S和NO3--N沉降受周边交通运输及生活燃料燃烧等因素影响较大。高硫沉降对农田生态系统供给氮硫元素的作用不可忽视,也应引起有关环境部门的重视。
        To understand the sedimentation characteristics and sources of atmospheric nitrogen and sulfur in typical farmland areas around Taiyuan city, the reaserch on temporal variation of atmospheric N and S wet deposition were conducted form June to October in2016, at Dongyang experimental base of Shanxi Academy of Agricultural Sciences. The results showed that the average concentrations of SO42--S, NH4+-N and NO3--N in precipitation were 11.84, 2.72, 0.85 mg/L, respectively, and the deposition rates were 34.50, 7.93,2.47 kg/hm2, respectively. The deposition rate of SO42--S was 4.3 times and 14 times that of NH4+-N and NO3--N, respectively. S deposition accounted for 77% of the total deposition, and inorganic nitrogen accounted for 23%, of which NH4+-N accounted for a high proportion. The concentration and deposition rate of SO42--S and NO3--N were extremely significant and significantly linearly correlated,the correlation coefficients were 0.688 and 0.619, respectively, it showed that they had the same source. The concentration ratios of SO42--S/NO3--N and NH4+-N/NO3--N were 13.93 and 3.20, which indicated the type of acid rain was mainly sulfuric acid type. In general, N deposition was mainly based on agricultural sources, and the deposition of SO42--S and NO3--N was greatly affected by surrounding transportation and combustion of living fuel. High-sulfur deposition should be paid more attention to its effect on the supply of sulfur in farmland ecosystems. It should also arouse the attention of relevant environmental departments.
引文
[1]GALLOWAY J N. Nitrogen mobilization in Asia[J]. Nutrient Cycling in Agroecosystems,2000,57(1):1-12.
    [2] ZHU Z L,CHEN D L. Nitrogen fertilizer use in China-Contributions to food production,impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63(2/3):117-127.
    [3] GALLOWAY J N,DENTENER F J,CAPONE D G,et al. Nitrogen cycles:Past,present,and future[J]. Biogeochemistry,2004,70(2):153-226.
    [4]张明,王体健,张艳,等.农田生态系统大气硫沉降通量的观测研究[J].气象科学,2003,23(3):263-272.
    [5] INOMATA Y,IGARASHI Y,CHIBA M,et al. Dry and wet deposition of water-insoluble dust and water-soluble chemical species during spring 2007 in Tsukuba,Japan[J]. Atmospheric Environment,2009,43(29):4503-4512.
    [6]梁亚宇,李丽君,刘平,等.大气氮沉降监测方法及中国不同地理分区氮沉降研究进展[J].山西农业科学,2018,46(10):1751-1755.
    [7] DENTENER F,DREVET J,LAMARQUE J F,et al. Nitrogen and sulfur deposition on regional and global scales:A multimodel evaluation[J]. Global Biogeochemical Cycles,2006,20(4):16615.
    [8] THORJ覫RN L,LYDERSEN E,TANG D,et al. Acid rain in China[J]. Environmental Science&Technology,2006,40(2):418-425.
    [9] LIU X,ZHANG Y,HAN W,et al. Enhanced nitrogen deposition over China[J]. Nature,2013,494:459-462.
    [10]王开扬.太原市干湿沉降中水溶性离子特征研究[D].太原:太原科技大学,2016.
    [11]王利,马文奇,王运华,等.区域尺度大气硫沉降的研究进展[J].华中农业大学学报,2007,26(5):734-740.
    [12]宋欢欢,姜春明,宇万太.大气氮沉降的基本特征与监测方法[J].应用生态学报,2014,25(2):599-610.
    [13]刘平,刘学军,骆晓声,等.山西北部农村区域大气活性氮沉降特征[J].生态学报,2016,36(17):5353-5359.
    [14]周瑞.北京地区大气降水的化学性质及其影响因素研究[D].济南:济南大学,2011.
    [15]姚孟伟,郭晓方,闫雨龙,等.太原市降水化学特征及来源分析[J].环境工程学报,2014,8(11):4864-4870.
    [16]段树毅.晋城市大气降水的化学组成特征[J].图书情报导刊,2011,21(7):197-199.
    [17]白莉,王中良.西安地区大气降水化学组成特征与物源分析[J].地球与环境,2008,36(4):289-297.
    [18]李爱萍,黄广华,高人,等.福州、建瓯和武夷山大气氮/硫湿沉降特征分析[J].亚热带资源与环境学报,2015,10(3):33-40.
    [19]陈能汪,洪华生,肖健,等.九龙江流域大气氮干沉降[J].生态学报,2006,26(8):2602-2607.
    [20]杨浩明,王体健,程炜,等.华东典型地区大气硫沉降通量的观测和模拟研究[J].气象科学,2005,25(6):560-568.
    [21]乔雪,江丽君,唐亚,等.九寨沟大气氮、磷和硫沉降的通量及水环境意义[J].山地学报,2014(5):633-640.
    [22]刘思言,陈瑾,卢平,等.广东韶关地区大气氮干湿沉降特征研究[J].生态环境学报,2014,23(9):1445-1450.
    [23]刘超明,万献军,曾伟坤,等.洞庭湖大气氮湿沉降的时空变异[J].环境科学学报,2018,38(3):1137-1146.
    [24]颜文娟.大连地区空气氮沉降研究[D].大连:大连交通大学,2014.
    [25]郭晓方,崔阳,王开扬,等.近3年太原市夏季降水的化学特征研究[J].环境科学,2015(2):388-395.
    [26]袁玲,周鑫斌,辜夕容,等.重庆典型地区大气湿沉降氮的时空变化[J].生态学报,2009,29(11):6095-6101.
    [27]许亚宣,段宁,柴发合,等.中国硫沉降数值模拟[J].环境科学研究,2006,19(5):1-10.
    [28]曹霄霄,王应刚,苏尚军,等.晋中盆地土壤氮元素空间异质性研究[J].山西农业科学,2017,45(10):1634-1637,1681.
    [29]贾志荣,张美俊,杨武德.施氮对套作玉米氮素吸收利用的影响[J].山西农业科学,2017,45(12):1960-1964,2031.
    [30]刘平,刘学军,刘恩科,等.山西省太原市旱作农区大气活性氮干湿沉降年度变化特征[J].中国生态农业学报,2017,25(5):625-633.