酸诱导对大豆蛋白/高酯果胶复合体系凝胶特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of acid induction on gelling properties of soy protein isolate/high-methoxy pectin complex system
  • 作者:刘圣雅 ; 彭媛媛 ; 张甫生 ; 郑炯
  • 英文作者:LIU Shengya;PENG Yuanyuan;ZHANG Fusheng;ZHENG Jiong;College of Food Science,Southwest University;National Demonstration Center for Experimental Food Science and Engineering Education(Southwest University);
  • 关键词:大豆蛋白 ; 高酯果胶 ; 流变特性 ; 质构特性 ; Zeta电位 ; 微观结构
  • 英文关键词:soy protein isolate;;high-methoxy pectin;;rheological properties;;textural properties;;Zeta potential;;microstructure
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:西南大学食品科学学院;食品科学与工程国家级实验教学示范中心(西南大学);
  • 出版日期:2018-09-19 22:52
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.378
  • 基金:中央高校基本科研业务费(SWU20161702001)
  • 语种:中文;
  • 页:SPFX201906017
  • 页数:6
  • CN:06
  • ISSN:11-1802/TS
  • 分类号:108-113
摘要
以大豆蛋白(soy protein isolate,SPI)和高酯果胶(high-methoxy pectin,HMP)为原料,利用酸诱导剂GDL制备p H分别为3. 3、3. 8、4. 3、5. 0、5. 6的SPI/HMP复合体系凝胶样品,研究复合体系的流变特性、质构特性、Zeta电位和微观结构。结果表明,随着p H的降低,SPI/HMP复合体系在流变和质构特性上,都表现出先增强后减弱的趋势。在p H=5. 0时,复合体系的黏度、弹性、硬度和咀嚼性等质构参数达到最大值,凝胶拥有稳定的固体弹性特征。对复合体系Zeta电位测定,发现在p H接近等电点时,复合体系Zeta电位的绝对值较小,此时SPI所带的负电荷恰好能被HMP中和,静电斥力减弱,有利于复合体系凝胶网络的形成。扫描电镜研究发现,在p H=5. 0时,SPI的疏水基团包埋进分子内部,为HMP提供了较多的结合位点,复合体系的微观结构最致密。而在其他p H条件下,复合体系的微观结构变得疏松无序,表现出较差的凝胶特性。
        Soy protein isolate( SPI) and high-methoxy pectin( HMP) were selected as raw materials. The acidinducing agent GDL was used to prepare gum samples that had the SPI/HMP composite system and pH of 3. 3,3. 8,4. 3,5. 0,and 5. 6,respectively. The SPI/HMP composite system was analyzed for its rheological characteristics,texture characteristics,Zeta potential,and microstructure. The results showed that with decreasing pH,the SPI/HMP composite system showed a consistent trend of increasing first and then decreasing in rheological and textural properties. At p H = 5. 0,the viscosity,elasticity,hardness,and chewiness of the composite system appeared to be the highest. The gel had a stable and strong solid elasticity. Through determining the Zeta potential of the composite system,it was found that the absolute value of the Zeta potential of the composite system was small when the p H was close to its isoelectric point. At this time,the negative charge of SPI was neutralized by HMP,the electrostatic repulsion was weakened,which was beneficial for forming the gelling network in the composite system. Scanning electron microscopy showed that at pH = 5. 0,the hydrophobic groups of SPI were embedded in the interior of the molecule,providing more binding sites for HMP. In addition,the microstructure of the composite system was the most compact at pH = 5. 0,while at other pH conditions,its microstructure was loose and disordered,showing poor gelling properties.
引文
[1] UCHENNA V O,IJEOMA O E. Use of soy bean products as cheap sources of protein in child-nutrition in akpuoga nike community,in Enugu State South East,Nigeria[J].Pakistan Journal of Nutrition,2009,8(4):491-494.
    [2]连喜军,鲁晓翔,陈彧,等. p H值和金属离子对大豆分离蛋白凝胶形成的作用[J].江苏农业科学,2007(1):162-164.
    [3]郑雅丹,张建友,丁玉庭,等.大豆蛋白凝胶特性研究进展[J].中国酿造,2008(14):11-16.
    [4]丁金龙,孙远明,乐学义.魔芋胶与大豆分离蛋白的相互作用研究[J].中国粮油学报,2003,18(3):65-69.
    [5]翁静宜,齐军茹,张曦,等.多糖的共价键合对7S球蛋白凝胶性能的影响[J].化工学报,2014,65(12):5 075-5 081.
    [6]王允华,郭兴凤.大豆蛋白-阴离子多糖共价复合物性能研究[J].粮食与油脂,2014(8):49-52.
    [7]张倩钰,徐秋雄,樊巧,等.竹笋膳食纤维对高酯果胶流变及其凝胶质构特性的影响[J].食品与发酵工业,2016,42(7):91-95.
    [8]张静,李元瑞,籍保平,等.酸性条件下酪蛋白与高酯果胶稳定体系的研究[J].西北农林科技大学学报(自然科学版),2008(6):195-199.
    [9] O'KENNEDY B T,MOUNSEY J S,MURPHY F,DUGGAN E,et al. Factors affecting the acid gelation of sodium caseinate[J]. International Dairy Journal,2006,16(10):1 132-1 141.
    [10]曾瑞琪,张明政,张甫生,等.高酯果胶对酸化大豆蛋白凝胶流变及质构特性的影响[J].食品与发酵工业,2018,44(1):113-120.
    [11]何红叶,潘超然.魔芋与大豆分离蛋白的相互作用研究进展综述[J].安徽农学通报(上半月刊),2012,18(9):35-37.
    [12]郑鹏飞.乳清蛋白/低酰基结冷胶复合凝胶的凝胶特性研究[D].杭州:浙江工商大学,2015.
    [13]张静,李元瑞,籍保平,等.酸性条件下酪蛋白与高酯果胶稳定体系的研究[J].西北农林科技大学学报(自然科学版),2008(6):195-199.
    [14]毕崇浩.大豆分离蛋白酸诱导凝胶的流变学特性和分形分析[D].北京:中国农业大学,2015.
    [15] DUKHIN A S,PARLIA S. Measuring zeta potential of protein nano-particles using electroacoustics[J]. Colloids and Surfaces B:Biointerfaces,2014,121:257-263.
    [16]于翠柳.大豆蛋白凝胶显微结构的研究[D].天津:天津科技大学,2012.
    [17]王吰,连喜军,鲁晓翔,等. p H和金属离子对大豆分离蛋白凝胶形成的作用[J].大豆科学,2007(1):71-74.
    [18] LUCEY J A,TEO C T,MUNRO P A,et al. Rheological properties at small(dynamic)and large(yield)deformations of acid gels made from heated milk[J]. Journal of Dairy Research,1997,64(4):591-600.
    [19]董蝶.大豆蛋白/阿拉伯胶复合物形成机理及其功能性质研究[D].无锡:江南大学,2016.
    [20] DAMODARAN S. Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process:Effect on gelation[J]. Journal of Agricultural and Food Chemistry,1988,36(2):262-269.
    [21]李芳.大豆蛋白乳状液酸诱导凝胶的制备及流变性质研究[D].无锡:江南大学,2011.
    [22] CHRONAKIS I S. Network formation and viscoelastic properties of commercial soy protein dispersions:effect of heat treatment,p H and calcium ions[J]. Food Research International,1996,29(2):123-124.
    [23]高丽.大豆蛋白的凝胶特性及其应用[D].武汉:华中农业大学,2007.
    [24] LAKEMOND C M M,JONGH H H J D,PAQUES M,et al. Gelation of soy glycinin; influence of p H and ionic strength on network structure in relation to protein conformation[J]. Food Hydrocolloids,2003,17(3):365-377.
    [25]向琪瑞.酪蛋白酸钠/低酰基结冷胶共混体系的流变学研究[D].杭州:浙江工商大学,2015.
    [26] MARTIN A H,DE LOS R J,POUVREAU L. Modulating the aggregation behaviour to restore the mechanical response of acid induced mixed gels of sodium caseinate and soy proteins[J]. Food Hydrocolloids,2016,58:215-223.
    [27] LI Fang,KONG Xiangzhen,ZHANG Caimeng,et al.Gelation behaviour and rheological properties of acid-induced soy protein-stabilized emulsion gels[J]. Food Hydrocolloids,2012,29(2):347-355.
    [28] TSENG Yenchang,XIONG Youling,YANG Fuqian. Influence of inulin/oligofructose on the acid-induced cold aggregation and gelation of preheated soy proteins[J]Journal of the Science of Food and Agriculture,2009,89(15):2 650-2 658.
    [29]刘进玺,王金水,蔡风英,等.酶解小麦面筋蛋白/κ-卡拉胶复合物凝胶特性研究[J].食品工业科技,2007(4):106-108.
    [30]刘志胜.豆腐凝胶的研究[D].北京:中国农业大学,2000.
    [31]魏冬旭,江连洲,王辰,等. p H值对大豆11S球蛋白结构和表面疏水性的影响[J].食品科学,2015,36(11):1-5.