有机硅烷共缩合制备抗紫外超疏水减反射涂层
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of anti-ultraviolet superhydrophobic anti-reflective coatings by co-condensation of organosilanes
  • 作者:李怡雯 ; 郝丽琴 ; 王红宁 ; 陈若愚
  • 英文作者:LI Yiwen;HAO Liqin;WANG Hongning;CHEN Ruoyu;College of Petrochemical Engineering, Changzhou University;
  • 关键词:二氧化硅 ; 纳米材料 ; ; 超疏水 ; 抗紫外 ; 甲基三乙氧基硅烷 ; 减反射
  • 英文关键词:silica;;nanomaterials;;film;;superhydrophobic;;anti-ultraviolet;;MTES;;anti-reflection
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:常州大学石油化工学院;
  • 出版日期:2019-08-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:国家自然科学基金(21571024);; 江苏省研究生科研与实践创新计划(KYZZ16_0248)
  • 语种:中文;
  • 页:HGJZ201908040
  • 页数:9
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:338-346
摘要
具有超疏水自洁功能的减反射涂层对太阳能光热组件在室外长期使用上有重要的意义,可以减少减反射涂层的清洗成本,延长减反射涂层的使用寿命。利用含有甲基和乙基等疏水基团的有机硅氧烷制备具有一定孔隙率的涂层,有望实现减反射和超疏水双重性能。本研究采用四甲氧基硅烷(TMOS)和甲基三乙氧基硅烷(MTES)共缩合,并利用甲氧基三甲基硅烷(MMS)进行羟基封端,制备了可以稳定两个月以上的均一溶胶。通过控制MTES和TMOS的水解工艺条件,采用浸渍提拉法制备了在400~800nm可见光波段平均透光率为97.06%、最高透光率为98.27%、水接触角为165°的超疏水减反射涂层,提出了MTES/TMOS/MMS溶胶的共缩合反应机理。涂层经过紫外耐久测试1080h后,涂层仍具有良好的减反射性能、疏水性和抗刻划强度,表现出良好的紫外耐久性。
        Antireflective coatings with super-hydrophobic characteristic have advantages in application for optical devices and solar thermal components,which can reduce the cleaning cost of the anti-reflection film and prolong the service life of the anti-reflection film. Organosilanes containing hydrophobic groups such as methyl groups are used to prepare coatings with a certain porosity expected to enhance both antireflective and the hydrophobic durability of coatings. In this study, tetramethoxysilane(TMOS) and methyltriethoxysilane(MTES)wereusedtopreparethesolbyco-polycondensation,methoxytrimethylsilane(MMS) was used as hydroxyl end-capping to terminate the condensation reaction during the gum phase and prepare a sol that was stable for more than 120 days. Under the optimum conditions, a superhydrophobic antireflective coating was prepared by immersion pulling method with an average transmittance of 97.06% at 400―800 nm, the highest transmittance of 98.27% and a water contact angle of 165°. And the reaction mechanism of the MTES/TMOS/MMS sol was deduced. After UV aging test for1080 hours, the coating still had good anti-reflection properties, hydrophobicity and anti scratching strength, and exhibited good UV durability.
引文
[1] KIM Y S, KUSAKABE K, MOROOKA S, et al. Preparation of microporous silica membranes for gas separation[J]. Korean J. Chem.Eng., 2001, 18:106-112.
    [2] ZHANGL, QIAO A, ZHENG M, et al. Rapid and substrateindependent layer-by-layer fabrication of antireflection and antifogging-integrated coatings[J]. J. Mater. Chem., 2010, 20:6125-6130.
    [3]荚桂玉,李怡雯,王红宁,等.具有梯度渐变折射率的超疏水减反膜的制备及其性能[J].无机材料学报, 2018, 33(9):92-97.JIA Guiyu, LI Yiwen, WANG Hongning, et al. Preparation and properties of superhydrophobic anti-reflection films with gradient refractive index[J]. Journal of Inorganic Materials, 2018, 33(9):92-97.
    [4] PRENE P, PRIOTTON J, BEAURAIN L, et al. Preparation of a sol-gel broadband antireflective and scratch-resistant coating for amplifier blast shields of the french laser LIL[J]. J. Sol-Gel Sci. Technol., 2000,19:533-537.
    [5] KAMEGAWA T, SHIMIZU Y, YAMASHIDA H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2and polytetrafluoroethylene[J]. Advanced Materials,2012, 24(27):3697.
    [6] LIU M, RODE A, FU L, et al. Reply to comment on water droplet motion control on superhydrophobic surfaces:exploiting the wenzelto-cassie transition[J]. Langmuir, 2011, 27(22):13962-13963.
    [7] CAI S, ZHANG Y, ZHANG H, et al. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. ACS Applied Materials&Interfaces,2014, 6(14):11470.
    [8] YUAN Y, CHEN Y, CHEN L, et al. Preparation, durability and thermostability of hydrophobic antireflective coatings for solar glass covers[J]. Solar Energy, 2015, 118:222-231.
    [9] SHIRTCLIFFE N J, MCHALE G, ATHERTON S, et al. An introduction to superhydrophilicity[J]. Advances in Colloid&Interface Science, 2010, 161(1-2):124.
    [10] BUDUNOGLU H, YILDIRIM A, GULER M O, et al. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films[J]. ACS Applied Materials&Interfaces,2011, 3(2):539.
    [11] PETCU C, PURCAR V, IANCHIS R, et al. Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films[J]. Applied Surface Science, 2016, 389:666-672.
    [12] YUAN Y, YAN G H, HUANG S H, et al. Preparation of hydrophobic SiO2/PMHS sol and ORMOSIL antireflective films for solar glass cover[J]. Solar Energy, 2016, 130:1-9.
    [13] BERGER F M. The pharmacological properties of 2-methyl, 2-namyl-4-hydroxy-methyl-1, 3-dioxolane(Glyketal), a new blocking agent of interneurons[J]. Journal of Pharmacology and Experimental Therapeutics, 1949, 96(3):213-223.
    [14]卫晓利,张发兴.硅改性高固含量水性聚氨酯分散体的制备及性能研究[J].聚氨酯工业, 2014, 29(5):22-25.WEI Xiaoli, ZHANG Faxing. Preparation and properties of silicon modified high solid content waterborne polyurethane dispersion[J].Polyurethane Industry, 2014, 29(5):22-25.
    [15] FAUSTINI M, NICOLE L, BOISSIERE C, et al. Hydrophobic,antireflective, self-cleaning, and antifogging sol-gel coatings:an example of multifunctional nanostructured materials for photovoltaic cells[J]. Chemistry of Materials, 2010, 22(15):4406-4413.
    [16] KANAMORI K, AIZAWA M, NAKANISHI K, et al. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties[J]. Advanced Materials, 2007, 19(12):1589-1593
    [17] NARAYAN K, RAMAN, MARK T, et al. Template-based approaches to the preparation of amorphous, nanoporous silicas[J]. Chemistry of Materials, 1996, 8(8):1682-1701.
    [18] ZHANG Y, ZHAO C, WANG P, et al. A convenient sol-gel approach to the preparation of nano-porous silica coatings with very low refractive indices[J]. Chemical Communications, 2014, 50(89):13813.
    [19] BERNSMEIER D, POLTE J, ORTEL E, et al. Antireflective coatings with adjustable refractive index and porosity synthesized by micelletemplated deposition of MgF2sol particles[J]. ACS Applied Materials&Interfaces, 2014, 6(22):19559-19565.
    [20] WEN X F, WANG K, PI P H, et al. Organic-inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol-gel derived materials in emulsion[J]. Applied Surface Science, 2011, 258(3):991-998.
    [21] SHEN Y C, CHANG W H, CHEN W C, et al. Non-fluorinated superamphiphobic surfaces through sol-gel processing of methyltriethoxysilane and tetraethoxysilane[J]. Materials Chemistry and Physics, 2009, 114(1):63-68.
    [22] XU Y, WU D, SUN Y H, et al. Comparative study on hydrophobic antireflective films from three kinds of methyl-modified silica sols[J].Journal of Non-Crystalline Solids, 2005, 351(3):258-266.
    [23] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J].Transactions of Faraday Society, 1944, 40:546-551.
    [24] ISIMJAN T, WANG T, ROHANI S. A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface[J].The Chemical Engineering Journal, 2012, 210(6):182-187.
    [25] LIU Juan, LU X, XIN Z, et al. Preparation and surface properties of transparent UV-resistant“petal effect” superhydrophobic surface based on polybenzoxazine[J]. Applied Surface Science, 2015, 353:1137-1142.
    [26] XIU Yonghao, HESS D W, WONG C P. UV-resistant and superhydrophobic self-cleaning surfaces using sol-gel processes[J].Journal of Adhesion Science and Technology, 2008, 22(15):1907-1917.
    [27] XU L, HE J. A novel precursor-derived one-step growth approach to fabrication of highly antireflective, mechanically robust and selfhealing nanoporous silica thin films[J]. Journal of Materials Chemistry C, 2013, 1(31):4655-4662.