基于石墨烯/铂纳米粒子复合材料的电化学传感器测定对氨基苯酚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Electrochemical Sensor Platform Based on Graphene/Platinum Nanoparticles Composite for Detection of p-Aminophenol
  • 作者:张彩云 ; 范丽芳 ; 张国娟 ; 王贵珍 ; 郭玉晶 ; 董川
  • 英文作者:ZHANG Cai-yun;FAN Li-fang;ZHANG Guo-juan;WANG Gui-zhen;GUO Yu-jing;DONG Chuan;Institute of Environmental Science,Shanxi University;School of Chemistry and Chemical Engineering,Shanxi University;
  • 关键词:电化学传感器 ; 对氨基苯酚 ; 石墨烯/铂纳米粒子复合材料 ; 聚二烯丙基二甲基氯化铵
  • 英文关键词:Electrochemical sensor;;p-Aminophenol;;PtNPs/PDDA-GNs;;Poly(diallyldimethylammonium chloride)
  • 中文刊名:FXKX
  • 英文刊名:Journal of Analytical Science
  • 机构:山西大学环境科学研究所;山西大学化学与化工学院;
  • 出版日期:2019-04-20
  • 出版单位:分析科学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(No.21707082,21775095);; 山西省自然科学基金(No.201601D102008)
  • 语种:中文;
  • 页:FXKX201902002
  • 页数:6
  • CN:02
  • ISSN:42-1338/O
  • 分类号:12-17
摘要
本工作通过简单的湿化学方法制备了聚二烯丙基二甲基氯化铵(PDDA)功能化的石墨烯/铂纳米粒子复合材料(PtNPs/PDDA-GNs),基于该材料构建了一种简单、快速的电化学传感器用于对氨基苯酚(PAP)的检测。由于该传感器同时具有石墨烯高的比表面、优异的导电性能,以及铂纳米粒子(PtNPs)优良的催化性能,因而对PAP具有极好的吸附和催化氧化性能。实验成功地实现了对PAP的高灵敏检测,其线性工作范围为10.0~1 000μmol/L,检测限(S/N=3)为3.0μmol/L。此外,将所构建的传感器用于实际样品的检测,回收率为98.0%~106.0%。
        In this work,poly(diallyldimethylammonium chloride) functionalized graphene/platinum nanoparticles(PtNPs/PDDA-GNs) was obtained by a simple wet-chemical strategy.This nanocomposite was utilized to construct a simple and rapid electrochemical sensor for fast and sensitive detection of p-aminophenol(PAP).This sensor possesses not only large surface areas and high conductivity of GNs,but excellent electrocatalytic activity of PtNPs for remarkable adsorption and catalytic oxidation of PAP.Thus,PAP could be successfully determined with highly sensitivity.A linear range was from 10.0 to 1 000 μmol/L with a detection limit of 3.0 μmol/L(S/N=3).Besides,the applicability of the sensing platform was successfully evaluated by determining PAP in the real samples.Satisfactory results were obtained with recoveries from 98.0% to 106.0%.
引文
[1] Song H,Chen T S.J Biochem Mol Toxicol,2015,15:34.
    [2] Mohamed F A,Abdallah M A,Shammat S M.Talanta,1997,44:61.
    [3] Chu Q,Jiang L,Tian X,Ye J.Analytica Chimica Acta,2008,606:246.
    [4] Monser L.J Pharm Biomed Anal,2002,27:851.
    [5] Vilian A T,Chen S M,Huang L H.Electrochimica Acta,2014,125:503.
    [6] Yola M L,Eren T,Atar N.Electrochimica Acta,2014,125:38.
    [7] Shan C,Yang H,Han D,Zhang Q,Ivaska A,Niu L.Biosensors & Bioelectronics,2010,25:1070.
    [8] Zhang S,Shao Y,Liao H,Engelhard M H,Yin G,Lin Y.ACS Nano,2011,5:1785.
    [9] Le Z G,Liu Z,Qian Y,Wang C.Applied Surface Science,2012,258:5348.
    [10] JIANG P,CHANG J X,ZHU Q,et al.Journal of Analytical Science(江平,常军霞,朱强,等.分析科学学报) 2014,30:373.
    [11] Shao Y,Wang J,Engelhard M,Wang C,Lin Y.Journal of Materials Chemistry,2010,20:743.
    [12] QIAN G M,YANG C Z,ZHANG J D.Journal of Analytical Science(钱功明,杨昌柱,张敬东.分析科学学报),2010,26:83.
    [13] Lu W,Luo Y,Chang G,Sun X.Biosensors & Bioelectronics,2011,26:4791.
    [14] Mccrory C C L,Devadoss A,Ottenwaelder X,et al.J Am Chem Soc,2011,133:3696.
    [15] Jr W S H,Offeman R E.J Am Chem Soc,1958,80:1339.
    [16] Laviron E.Journal of Electroanalytical Chemistry & Interfacial Electrochemistry,1979,100:263.
    [17] Shiroma L Y,Santhiago M,Gobbi A L,Kubota L T.Analytica Chimica Acta,2012,725:44.
    [18] Rattanarat P,Sueangam A,Ruecha N,Siangproh W,Henry C S,Srisaart M,Chailapakul O.Analytica Chimica Acta,2016,925:51.
    [19] Neto J D R M,Santos W D J R,Lima P R,Tanaka A A,Kubota L T.Sensors & Actuators B Chemical,2011,152:220.