转臂定位节点非线性特性对动车组动力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effect of Nonlinear Characteristics of Rotating Arm Positioning Nodes on the Dynamic Performance of EMUs
  • 作者:王业 ; 曾京
  • 英文作者:WANG Ye;ZENG Jing;State Key Laboratory of Traction Power, Southwest Jiaotong University;
  • 关键词:转臂定位节点 ; 非线性模型 ; 动车组 ; 轮轨横向力
  • 英文关键词:rotating arm positioning node;;non-linear model;;EMU;;wheel-rail lateral force
  • 中文刊名:MECH
  • 英文刊名:Machinery
  • 机构:西南交通大学牵引动力国家重点试验室;
  • 出版日期:2019-07-15
  • 出版单位:机械
  • 年:2019
  • 期:v.46
  • 基金:国家重点研发计划资助(2017YFB1201304-11)
  • 语种:中文;
  • 页:MECH201907004
  • 页数:5
  • CN:07
  • ISSN:51-1131/TH
  • 分类号:23-26+64
摘要
橡胶弹性元件的动态特性通常与激励振幅和频率以及温度相关,针对某型号高速动车组的一系定位节点,在常温下进行了相关试验,得出了该橡胶定位节点在不同激励频率与不同激励振幅下的动态特性,在试验数据的基础上,建立了高速列车一系转臂定位节点的非线性动力学模型,并分析了其对于轮轨横向力与构架横向稳定性的影响,结果表明动车组转臂橡胶节点的非线性刚度在常温下与频率关联较弱,与振幅关联较强;采用非线性橡胶节点的动车组模型其轮轨横向力高于线性模型,其构架横向振动剧烈程度高于线性模型。
        The dynamic characteristics of rubber elastic elements are usually related to the excitation amplitude,frequency and temperature. Aiming at the positioning nodes of prime suspension of a type of high-speed EMU,relevant experiments are carried out at room temperature, and the dynamic characteristics of the rubber positioning nodes under different excitation frequencies and amplitudes are obtained. Based on the experimental data, a non-linear dynamic model of the positioning nodes of the rotating arm of high-speed train is established,and its influence on the lateral force of wheel-rail and the lateral stability of the bogie is analyzed. The results show that the non-linear stiffness of rubber joints of EMU's rotating arm has weak correlation with frequency and strong correlation with amplitude at room temperature. The wheel-rail lateral force of the EMU model with non-linear positioning nodes is higher than that of the linear model, and the lateral vibration intensity of the bogie is higher than that of the linear model.
引文
[1]Berg M.A non-linear rubber spring model for rail vehicledynamics analysis[J].Vehicle System Dynamics,1998,30
    [2]张大伟,翟婉明,朱胜阳,等.基于橡胶弹簧非线性模型的重载车辆轮轨动力特征分析[J].铁道学报,2016,38(12):19-26.
    [3]Huailong Shi,Pingbo Wu.A nonlinear rubber spring modelcontaining fractional derivatives for usein railroad vehicle dynamic analysis[J].Rail and Rapid Transit,2016,230(7):1745-1759.
    [4]杨俊.橡胶弹簧动态特性研究[D].成都:西南交通大学,2015.
    [5]潘孝勇,柴国钟,上官文斌,等.基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模[J].振动与冲击,2007,26(10):6-15.
    [6]王丽娜.带橡胶垫的高圆簧组合系统非线性刚度研究[D].成都:西南交通大学,2013:51-52.
    [7]BSI.EN 13913-2003 Railway application-Rubber suspesion components Elastomer based mechanical parts[S].2003.
    [8]中国国家标准管理委员会.GB/T 15168-2013振动与冲击隔离静、动态测试方法[S].北京:中国标准出版社,2013.
    [9]国家铁路局.TB/T 2843-2015机车车辆用弹性橡胶元件通用技术条件[S].北京:中国铁道出版社,2016.
    [10]ASTM Committee.ASTM D575-91 Standard Test Methods for Rubber Properties in Compression[S].2012
    [11]王福天.车辆动力学[M].北京:中国铁道出版社,1994.
    [12]丁奥,王勇,吴佳佳,等.基于SIMPACK的铁道车辆曲线通过能力研究[J].机械,2019,46(4):37-41.