水稻种子活力相关基因鉴定及分子调控机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in identification of genes related to seed vigor and molecular mechanism in regulation in rice
  • 作者:张红生 ; 程金平 ; 王健康 ; 詹成芳
  • 英文作者:ZHANG Hongsheng;CHENG Jinping;WANG Jiankang;ZHAN Chengfang;State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production,Nanjing Agricultural University;
  • 关键词:水稻 ; 种子活力 ; 基因克隆 ; 分子机制
  • 英文关键词:rice;;seed vigor;;gene cloning;;molecular mechanisms
  • 中文刊名:NJNY
  • 英文刊名:Journal of Nanjing Agricultural University
  • 机构:南京农业大学作物遗传与种质创新国家重点实验室/江苏省现代作物生产协同创新中心;
  • 出版日期:2019-01-23 09:33
  • 出版单位:南京农业大学学报
  • 年:2019
  • 期:v.42;No.181
  • 基金:江苏省科技支撑计划(农业)重点资助项目(BE2016380);; 国家自然科学基金青年基金项目(31601387)
  • 语种:中文;
  • 页:NJNY201902002
  • 页数:10
  • CN:02
  • ISSN:32-1148/S
  • 分类号:7-16
摘要
水稻是我国最重要的粮食作物。种子活力是多基因控制的数量性状,提高水稻种子活力对我国目前水稻轻简栽培模式推广,实现水稻高产、优质、高效生产具有重要意义。本文从水稻种子活力评价指标、种子活力关键基因鉴定和克隆、种子活力调控的分子机制等方面综述了近年来的主要研究进展。基于分子标记技术、全基因组关联分析、高通量测序技术和组学技术等已经克隆了23个种子活力关键基因,包括转录因子基因和脱落酸(ABA)、赤霉素(GA) 2种植物激素代谢相关的基因等,通过2种激素的代谢平衡控制种子胚的成熟、种子休眠、种子萌发和幼苗生长等过程,为利用分子设计育种技术改良水稻种子活力提供基础。
        Rice is the most important food crop in China. Rice seed vigor is a complex quantitative trait controlled by multiple genes and it is of great significance to improve rice seed vigor for high yield,quality and efficiency of production under direct seedling rice.This paper reviewed the main research advances including evaluation index,gene identification and cloning,molecular regulation mechanism relate to rice seed vigor in recent years. Based on the molecular markers and map-based cloning,genome-wide association study( GWAS),high throughput sequencing,and omics techonology,more than twenty-three key genes related to seed vigor have been cloned,including transcription factor genes,metabolism-related genes of plant hormone ABA and GA. Through the balance of ABA and GA metabolism,it regulates maturing of embryos,seed dormancy and germination,seedling growth. It will be very helpful to improve genetics of rice seed vigor by molecular design breeding technology in the future.
引文
[1]孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展[J].中国农业科学,2007,40(1):48-53.Sun Q,Wang J H,Sun B Q. Advances on seed vigor physiological and genetic mechanisms[J]. Scientia Agricultura Sinica,2007,40(1):48-53(in Chinese with English abstract).
    [2]张红生,胡晋.种子学[M]. 2版.北京:科学出版社,2015.Zhang H S,Hu J. Seed Science[M]. 2nd ed. Beijing:Science Press,2015(in Chinese).
    [3]张安鹏,钱前,高振宇.水稻种子活力的研究进展[J].中国水稻科学,2018,32(3):296-303.Zhang A P,Qian Q,Gao Z Y. Research advances on rice seed vigor[J]. Chinese Journal of Rice Science,2018,32(3):296-303(in Chinese with English abstract).
    [4] Han C,Yang P F. Studies on the molecular mechanisms of seed germination[J]. Proteomics,2015,15(10):1671-1679.
    [5] Bewley J,Bradford K,Hilhorst H,et al. Seeds:Physiology of Development,Germination and Dormancy[M]. New York:Springer,2013.
    [6] Wei T,He Z L,Tan X Y,et al. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination[J]. Biochemical and Biophysical Research Communications,2015,464(1):176-181.
    [7]李振华,王建华.种子活力与萌发的生理与分子机制研究进展[J].中国农业科学,2015,48(4):646-660.Li Z H,Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Scientia Agricultura Sinica,2015,48(4):646-660(in Chinese with English abstract).
    [8] Bewley J. Seed germination and dormancy[J]. The Plant Cell,1997,9:1055-1066.
    [9] Zhu G H,Ye N H,Zhang J H,et al. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis[J]. Plant and Cell Physiology,2009,50(3):644-651.
    [10] Nakashima K,Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports,2013,32(7):959-970.
    [11] Yang P F,Li X J,Wang X Q,et al. Proteomic analysis of rice(Oryza sativa)seeds during germination[J]. Proteomics,2007,7(18):3358-3368.
    [12] Catusse J,Job C,Job D. Transcriptome-and proteome-wide analyses of seed germination[J]. Comptes Rendus Biologies,2008,331(10):815-822.
    [13] Wang Z F,Wang J F,Bao Y M,et al. Quantitative trait loci controlling rice seed germination under salt stress[J]. Euphytica,2011,178(3):297-307.
    [14] Wang Z F,Wang J F,Bao Y M,et al. Quantitative trait loci analysis for rice seed vigor during the germination stage[J]. J Zhejiang Univ Sci B,2010,11(12):958-964.
    [15] Li M,Sun P L,Zhou H J,et al. Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2011,123(3):411-420.
    [16] Shi Y Y,Gao L L,Wu Z C,et al. Genome-wide association study of salt tolerance at the seed germination stage in rice[J]. BMC Plant Biology,2017,17:92.
    [17] Xie L X,Tan Z W,Zhou Y,et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. Journal of Integrative Plant Biology,2014,56(8):749-759.
    [18] Zhao Y,Zhao W P,Jiang C H,et al. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS[J].Frontiers in Plant Science,2018,9:332.
    [19] Lu Q,Zhang M C,Niu X J,et al. Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping[J]. Planta,2016,243(3):645-657.
    [20] Cheng J P,He Y Q,Yang B,et al. Association mapping of seed germination and seedling growth at three conditions in indica rice(Oryza sativa L.)[J]. Euphytica,2015,206(1):103-115.
    [21] Xu C G,Li X Q,Xue Y,et al. Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines[J]. Theoretical and Applied Genetics,2004,109(3):640-647.
    [22] Yu J,Zao W G,He Q,et al. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage[J]. Molecular Genetics and Genomics,2017,292(6):1391-1403.
    [23] Sabouri H,Rezai A M,Moumeni A,et al. QTLs mapping of physiological traits related to salt tolerance in young rice seedlings[J]. Biologia Plantarum,2009,53(4):657-662.
    [24] Guo Z L,Yang W N,Chang Y,et al. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice[J].Molecular Plant,2018,11(6):789-805.
    [25] Li L F,Liu X,Xie K,et al. q LTG-9,a stable quantitative trait locus for low-temperature germination in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2013,126(9):2313-2322.
    [26] Fujino K,Sekiguchi H,Matsuda Y,et al. Molecular identification of a major quantitative trait locus,q LTG3-1,controlling low-temperature germinability in rice[J]. Proc Natl Acad Sci USA,2008,105(34):12623-12628.
    [27] He Y Q,Cheng J P,Li X D,et al. Acquisition of desiccation tolerance during seed development is associated with oxidative processes in rice[J].Botany,2016,94(2):91-101.
    [28] Dang X J,Thi T G T,Dong G S,et al. Genetic diversity and association mapping of seed vigor in rice(Oryza sativa L.)[J]. Planta,2014,239(6):1309-1319.
    [29] Cheng X X,Cheng J P,Huang X,et al. Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice[J]. PLoS One,2013,8(11):e80002.
    [30] Wu J H,Feng F J,Lian X M,et al. Genome-wide association study(GWAS)of mesocotyl elongation based on re-sequencing approach in rice[J]. BMC Plant Biology,2015,15:218.
    [31] Wang D,Liu J L,Li C G,et al. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice[J]. Rice,2016,9(1):61.
    [32] Wang L,Cheng J P,Lai Y Y,et al. Identification of QTLs with additive,epistatic and QTL×development interaction effects for seed dormancy in rice[J]. Planta,2014,239(2):411-420.
    [33] Gu X Y,Liu T L,Feng J H,et al. The q SD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice[J]. Plant Molecular Biology,2010,73(1/2):97-104.
    [34] Hori K,Sugimoto K,Nonoue Y,et al. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars[J]. Theoretical and Applied Genetics,2010,120(8):1547-1557.
    [35] Takeuchi Y,Lin S Y,Sasaki T,et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice[J]. Theoretical and Applied Genetics,2003,107(7):1174-1180.
    [36] Lin S Y,Sasaki T,Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice,Oryza sativa L.,using backcross inbred lines[J]. Theoretical and Applied Genetics,1998,96(8):997-1003.
    [37] Marzougui S,Sugimoto K,Yamanouchi U,et al. Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice[J]. Theoretical and Applied Genetics,2012,124(5):893-902.
    [38] Zhang A P,Liu C L,Chen G,et al. Genetic analysis for rice seedling vigor and fine mapping of a major QTL q SSL1b for seedling shoot length[J]. Breeding Science,2017,67(3):307-315.
    [39] Guo X L,Hou X M,Fang J,et al. The rice GERMINATION DEFECTIVE 1,encoding a B3 domain transcriptional repressor,regulates seed germination and seedling development by integrating GA and carbohydrate metabolism[J]. The Plant Journal,2013,75(3):403-416.
    [40] Hobo T,Kowyama Y,Hattori T. A b ZIP factor,TRAB1,interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proc Natl Acad Sci USA,1999,96(26):15348-15353.
    [41] Sugimoto K,Takeuchi Y,Ebana K,et al. Molecular cloning of Sdr4,a regulator involved in seed dormancy and domestication of rice[J]. Proc Natl Acad Sci USA,2010,107(13):5792-5797.
    [42] Gu X Y,Foley M E,Horvath D P,et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice[J]. Genetics,2011,189(4):1515-1524.
    [43] Ye H,Feng J H,Zhang L H,et al. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice[J]. Plant Physiology,2015,169:2152-2165.
    [44] Yang X,Gong P,Li K Y,et al. A single cytosine deletion in the Os PLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. Journal of Experimental Botany,2016,67(9):2761-2776.
    [45] Abe A,Takagi H,Fujibe T,et al. Os GA20ox1,a candidate gene for a major QTL controlling seedling vigor in rice[J]. Theoretical and Applied Genetics,2012,125(4):647-657.
    [46] Song S,Dai X,Zhang W H. A rice F-box gene,Os Fbx352,is involved in glucose-delayed seed germination in rice[J]. Journal of Experimental Botany,2012,63(15):5559-5568.
    [47] Zhao L F,Hu Y B,Chong K,et al. ARAG1,an ABA-responsive DREB gene,plays a role in seed germination and drought tolerance of rice[J].Annals of Botany,2010,105(3):401-409.
    [48] Liu C W,Fukumoto T,Matsumoto T,et al. Aquaporin Os PIP1; 1 promotes rice salt resistance and seed germination[J]. Plant Physiology and Biochemistry,2013,63:151-158.
    [49] Wu J H,Zhu C F,Pang J H,et al. Os LOL1,a C2C2-type zinc finger protein,interacts with Osb ZIP58 to promote seed germination through the modulation of gibberell in biosynthesis in Oryza sativa[J]. The Plant Journal,2014,80(6):1118-1130.
    [50] Li Z Y,Tang L Q,Qiu J H,et al. Serine carboxypeptidase 46 regulates grain filling and seed germination in rice(Oryza sativa L.)[J]. PLoS One,2016,11(7):e0159737.
    [51] Bhatnagar N,Min M K,Choi E H,et al. The protein phosphatase 2C clade A protein Os PP2C51 positively regulates seed germination by directly inactivating Osb ZIP10[J]. Plant Molecular Biology,2017,93(4/5):389-401.
    [52] Kim H,Hwang H,Hong J W,et al. A rice orthologue of the ABA receptor,Os PYL/RCAR5,is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth[J]. Journal of Experimental Botany,2012,63(2):1013-1024.
    [53] Tian X J,Wang Z Y,Li X F,et al. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice[J].Rice,2015,8(1):28.
    [54] Kaur H,Petla B P,Kamble N U,et al. Differentially expressed seed aging responsive heat shock protein Os HSP18.2 implicates in seed vigor,longevity and improves germination and seedling establishment under abiotic stress[J]. Frontiers in Plant Science,2015,6:e00713.
    [55] Wei Y D,Xu H B,Diao L R,et al. Protein repair l-isoaspartyl methyltransferase 1(PIMT1)in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant Molecular Biology,2015,89(4/5):475-492.
    [56] Petla B P,Kamble N U,Kumar M,et al. Rice proteinl-I soaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious iso Asp and reactive oxygen species accumulation and are implicated in seed vigor and longevity[J]. New Phytologist,2016,211(2):627-645.
    [57] Wang X,Zou B H,Shao Q L,et al. Natural variation reveals that Os SAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany,2018,69(3):413-421.
    [58] Xu E S,Chen M M,He H,et al. Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice[J]. Frontiers in Plant Science,2017,7:e2006.
    [59] He Y Q,Cheng J P,He Y,et al. Influence of isopropylmalate synthase Os IPMS1 on seed vigor associated with amino acid and energy metabolism in rice[J]. Plant Biotechnology Journal,2019,17(2):322-337.
    [60] Magwa R A,Zhao H,Xing Y Z. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice(Oryza sativa L.)[J]. BMC Genetics,2016,17(1):28.
    [61] Lu Q,Niu X J,Zhang M C,et al. Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice(Oryza sativa L.)[J]. Frontiers in Plant Science,2018,8:e02213.
    [62] Hsu S K,Tung C W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice[J]. Rice,2015,8(1):38.
    [63] Sano N,Ono H,Murata K,et al. Accumulation of long-lived m RNAs associated with germination in embryos during seed development of rice[J].Journal of Experimental Botany,2015,66(13):4035-4046.
    [64] Howell K A,Narsai R,Carroll A,et al. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process[J]. Plant Physiology,2009,149(2):961-980.
    [65] Dametto A,Sperotto R A,Adamski J M,et al. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes[J]. Plant Science,2015,238:1-12.
    [66] He D L,Han C,Yang P F. Gene expression profile changes in germinating rice[J]. Journal of Integrative Plant Biology,2011,53(10):835-844.
    [67] He D L,Han C,Yao J L,et al. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach[J].Proteomics,2011,11(13):2693-2713.
    [68] Han C,Yang P F,Sakata K,et al. Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination[J]. Journal of Proteome Research,2014,13(3):1766-1782.
    [69] Liu S J,Xu H H,Wang W Q,et al. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment[J].Physiologia Plantarum,2015,154(1):142-161.
    [70] Liu S J,Xu H H,Wang W Q,et al. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds[J]. Journal of Plant Physiology,2016,196/197:79-92.
    [71] Xu H H,Liu S J,Song S H,et al. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds[J]. Plant Physiology and Biochemistry,2016,103:219-242.
    [72] Cheng J P,Wang L,Zeng P,et al. Identification of genes involved in rice seed priming in the early imbibition stage[J]. Plant Biology,2017,19(1):61-69.