典型肥料生产场地氨氮分布特征及风险控制目标确定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Ammonia-Nitrogen Distribution and Determination of Risk Control Targets at an Abandoned Fertilizer Production Site
  • 作者:谢雨呈 ; 谭长银 ; 张朝 ; 王积才 ; 王梅 ; 杨敏 ; 郭观林
  • 英文作者:XIE Yucheng;TAN Changyin;ZHANG Chao;WANG Jicai;WANG Mei;YANG Min;GUO Guanlin;College of Resources and Environmental Science,Hunan Normal University;State Key Laboratory of Environmental Criteria and Risk Assessment,Department of Soil Pollution and Control,Chinese Research Academy of Environmental Sciences;
  • 关键词:污染场地 ; 土壤 ; 地下水 ; 氨氮 ; 污染特征 ; 控制目标值
  • 英文关键词:contaminated site;;soil;;groundwater;;ammonia-nitrogen;;pollution characteristics;;control target value
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:湖南师范大学资源与环境科学学院;中国环境科学研究院土壤与固废环境研究所环境基准与风险评估国家重点实验室;
  • 出版日期:2018-09-13 09:41
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.254
  • 基金:国家自然科学基金项目(No.41571311)~~
  • 语种:中文;
  • 页:HJKX201903013
  • 页数:10
  • CN:03
  • ISSN:11-1827/X
  • 分类号:107-116
摘要
为探究肥料生产场地的NH_3-N(氨氮)分布特征及环境风险,以我国某肥料生产场地为研究对象,在场地调查基础上,对场地土壤和地下水NH_3-N的空间分布进行分析,并以人体健康和场地地下水为保护对象分别讨论了土壤NH_3-N风险控制目标值的计算方法.结果表明:①目标场地土壤中w(NH_3-N)为0. 03~15 000 mg/kg,水平方向上高值区集中分布于核心生产区及原辅料堆场,垂向上总体表现为由上至下随深度增加呈先逐步升高后降低的趋势,并且富集于人工填土与原状粉质黏土交界处,粉质黏土阻碍NH_3-N向下迁移,并随地层结构变化其迁移深度不同.②场地上层滞水和潜水中ρ(NH_3-N)分别为19. 10~3 320和0. 03~219 mg/L,超标率分别为100%和57. 89%,并且地下水与土壤的NH_3-N在水平空间分布上具有重叠特征.③因NH_3-N主要通过呼吸吸入挥发性气体产生暴露,并且仅有经呼吸暴露的毒性参数,故采用《污染场地风险评估技术导则》中经呼吸暴露途径的非致癌效应风险控制值计算模型来计算土壤NH_3-N的控制目标,通过代入场地实测土壤Kd(土-水分配系数),得到居住用地下的土壤NH_3-N控制目标值为9 195 mg/kg;若考虑保护地下水水质安全,据三相或两相平衡模型耦合NH_3-N在包气带衰减和地下水稀释作用,当目标场地地表无积水的入渗条件下得到的控制目标值为6 203 mg/kg;当地层从上至下呈饱和含水条件时,土壤NH_3-N控制目标为811 mg/kg.计算值可用作不同场地进行土壤NH_3-N风险管控的参考目标,实际应用中可结合不同地块环境条件、不同受体和保护目标,选择相应的风险控制值对场地进行风险管控.此外,土壤和地下水的NH_3-N污染控制均可考虑采用工程措施和制度控制来进行.
        To explore the pollution characteristics and environmental risks of ammonia-nitrogen at fertilizer production sites, the concentrations of ammonia-nitrogen in the soil and groundwater of an abandoned fertilizer factory were analyzed. The control target values for soil ammonia-nitrogen were calculated by considering the protection of human health and groundwater,respectively. The results showed that the concentrations of the soil ammonia-nitrogen at the site were between 0. 03 and 15,000 mg/kg. The abnormally high pollution areas were in the central production areas and material storage areas. The vertical distribution of ammonia-nitrogen in the soil showed a trend of gradually increasing and then decreasing with the increase of depth in the profile. At different migration depths,the peak concentration of ammonia-nitrogen always appeared at the interface between the upper artificial fill and the undisturbed silty clay. The fine silty clay prevented the ammonia-nitrogen from migrating downward,and the ammonia-nitrogen had different migration depths as a result of the change of stratigraphic texture. Moreover,the site was subjected to heavy groundwater pollution of ammonia-nitrogen. The concentrations of ammonia-nitrogen in perched water and phreatic water were 19. 10-3,320 and 0. 03-219 mg/L,respectively,which was 100% and57. 89% above the contamination limits,respectively. According to the layout of the original factory,the ammonia-nitrogen pollution of groundwater and soil had similar spatial distribution patterns. Because currently only toxicity parameters of inhalation exposure route were available for ammonia-nitrogen,the control target of soil ammonia-nitrogen was calculated by using the calculation model of the non-cancer effect risk control value by considering only the inhalation exposure route in the Technical Guidelines for Risk Assessment of Contaminated Sites. Using site-specific measured the soil-water distribution coefficient( Kd),the control target value of ammonia-nitrogen in the soil was determined to be 9195 mg/kg based on an assumption of residential land use scenario. With regard to the protection of groundwater quality,the soil control target values were calculated using the three-or two-phase equilibrium coupled groundwater dilution model and the decay process within unsaturated zone. Depending on the scenario assumptions that there was a surface ponding or not,the control target values were 6203 and 818 mg/kg,respectively. Different control target values should be selected according to the different environmental conditions,and both soil and groundwater should be controlled by means of engineering measures and institutional control.
引文
[1]刘庚,牛俊杰,张朝,等.某铅酸蓄电池污染场地表层土壤重金属Pb空间分布预测研究[J].环境科学,2014,35(12):4712-4719.LIU Geng,NIU Junjie,ZHANG Chao,et al.Spatial distribution prediction of surface soil Pb in a battery contaminated site[J].Environmental Science,2014,35(12):4712-4719.
    [2]US Environmental Protection Agency.Toxicological review of ammonia non-cancer inhalation:executive summary[R].Washington DC:Integrated Risk Information System(IRIS),2016:1-10.
    [3]LEBLANC J R,MADHAVAN S,PORTER R E.Kirk-Othmer encyclopedia of chemical technology[M].4th ed.New York:John Wiley&Sons Inc.,1978:335-339.
    [4]GALLOWAY J N,TOWNSEND A R,ERISMAN J W,et al.Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J].Science,2008,320(5878):889-892.
    [5]YU X F,ZHANG Y X,ZOU Y C,et al.Adsorption and desorption of ammonium in wetland soils subject to freeze-thaw cycles[J].Pedosphere,2011,21(2):251-258.
    [6]RANJBAR F,JALALI M.Measuring and modeling ammonium adsorption by calcareous soils[J].Environmental Monitoring&Assessment,2013,185(4):3191-3199.
    [7]JU X,ZHANG C.Nitrogen cycling and environmental impacts in upland agricultural soils in North China:a review[J].Journal of Integrative Agriculture,2017,16(12):2848-2862.
    [8]HERNANDEZ-MARTINEZ J L,PRADO B,CAYETANO-SALAZAR M,et al.Ammonium-nitrate dynamics in the critical zone during single irrigation events with untreated sewage effluents[J].Journal of Soils&Sediments,2016,18(2):467-480.
    [9]MOORE T A,XING Y,LAZENBY B,et al.Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater[J].Environmental Science&Technology,2011,45(17):7217-7225.
    [10]LI Y,CHAPMAN S J,NICOL G W,et al.Nitrification and nitrifiers in acidic soils[J].Soil Biology&Biochemistry,2018,116:290-301.
    [11]史崇文,盛若虹,李肃民.污灌土壤中氨氮转化及其转化速率研究[J].中国环境监测,1996,12(1):7-8.SHI Chongwen,SHENG Ruohong,LI Sumin.The study of ammoniacal nitrogen transformation and transformable rate in wastewater irrigation soil[J].Environmental Monitoring in China,1996,12(1):7-8.
    [12]WELLS N S,HAKOUN V,BROUYERE S,et al.Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system[J].Water Research,2016,98:363-375.
    [13]US Environmental Protection Agency.Toxicological profile for ammonia[R].Atlanta Georgia,America:Agency for Toxic Substances and Disease Registry,2004:18-21.
    [14]ZUO R,CHEN X,LI X,et al.Distribution,genesis,and pollution risk of ammonium nitrogen in groundwater in an arid loess plain,northwestern China[J].Environmental Earth Sciences,2017,76(17):629.
    [15]JIAO J J,WANG Y,CHERRY J A,et al.Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta,China[J].Environmental Science&Technology,2010,44(19):7470-7475.
    [16]DAVIDSON M E,SCHAEFFER J,CLARK M L,et al.Personal exposure of dairy workers to dust,endotoxin,muramic acid,ergosterol and ammonia on large-scale dairies in the high plains western United States[J].Journal of Occupational&Environmental Hygiene,2017,15(3):182-193.
    [17]DELAHOZ R E,SCHLUETER D P,ROM W N.Chronic lung disease secondary to ammonia inhalation injury:a report on three case[J].American Journal of Industrial Medicine,1996,29(2):209-214.
    [18]环境保护部.HJ 634-2012土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定氯化钾溶液提取-分光光度法[S].北京:中国环境科学出版社,2012.
    [19]环境保护部.HJ 535-2009水质氨氮的测定纳氏试剂分光光度法[S].北京:中国环境科学出版社,2009.
    [20]环境保护部.HJ 25.3-2014污染场地风险评估技术导则[S].北京:中国环境科学出版社,2014.
    [21]王君武.场地风险评价中挥发侵入模型参数敏感性研究[D].大连:大连理工大学,2015:1-70.
    [22]朱菲菲,侯红,赵龙,等.以保护地下水为目标的Ag土壤环境基准推算案例[J].环境科学研究,2014,27(12):1556-1563.ZHU Feifei,HOU Hong,ZHAO Long,et al.Derivation of groundwater protection-based soil environmental criteria for silver:a case study[J].Research of Environmental Sciences,2014,27(12):1556-1563.
    [23]JOHN A C,RICHARD L B,THOMAS E M,et al.Software guidance manual:RBCA tool kit for chemical releases[R].Houston Texas,America:GSI Environmental Inc.,2007:86-87.
    [24]RANJBAR F,JALALI M.Measuring and modeling ammonium adsorption by calcareous soils[J].Environmental Monitoring&Assessment,2013,185(4):3191-3199.
    [25]UK Environmental Agency.Remedial targets methodology:hydrogeological risk assessment for land contamination[R].London:United Kingdom Environmental Agency,2006:43-54.
    [26]钟茂生,姜林,姚珏君,等.修复达标土壤回填对地下水环境影响的层次化评估方法应用研究[J].环境科学,2013,34(3):907-913.ZHONG Maosheng,JIANG Lin,YAO Juejun,et al.Application of tiered approach to assess the impact of backfilling remediated soil on groundwater[J].Environmental Science,2013,34(3):907-913.
    [27]丁素玲.非均质包气带中三氮迁移转化数值模拟[D].北京:中国地质大学(北京),2012:45-46.
    [28]杜青青,尹芝华,左锐,等.某污染场地氨氮迁移过程模拟研究[J].中国环境科学,2017,37(12):4585-4595.DU Qingqing,YIN Zhihua,ZUO Rui,et al.Migration process simulation of ammonia nitrogen in contaminated site[J].China Environmental Science,2017,37(12):4585-4595.
    [29]国家质量监督检验检疫总局,国家标准化管理委员会.GB/T14848-2017地下水质量标准[S].北京:中国质检出版社,2017.
    [30]陈奕汀,程红光,林春野,等.冻融作用对三江平原有机土吸附铵根离子及其分配系数的影响[J].农业环境科学学报,2012,31(2):390-394.CHEN Yiting,CHENG Hongguang,LIN Chunye,et al.Influence of freeze-thaw on adsorption/distribution coefficient of ammonium in organic soils from wetland of Sanjiang Plain,China[J].Journal of Agro-Environment Science,2012,31(2):390-394.
    [31]杨欢.基于平衡和非平衡模型的包气带土壤中氨氮运移过程研究[D].北京:中国地质大学(北京),2015:26-27.
    [32]US Westinghouse Electric Company.Corrective measures study:Western Zirconium[R].Ogden Utah,America:Westinghouse Electric Company,2010:4-5.
    [33]US Crop Production Services.No further action decision document:Agrium,Inc.[R].La Grande Oregon,America:Crop Production Services,2003:1-2.
    [34]ARMSTRONG D A,CHIPPENDALE D,KNIGHT A W,et al.Interaction of ionized and un-ionized ammonia on short-term survival and growth of prawn larvae,macrobrachium rosenbergii[J].Biological Bulletin,1978,154(1):15-31.
    [35]US Environmental Protection Agency.Institutional controls:a citizen's guide to understanding institutional controls at superfund,brownfields,federal facilities,underground storage tank,and resource conservation and recovery act cleanups[R].Washington DC:Office of Solid Waste and Emergency Response,2005:1-9.
    [36]US Kansas Department of Health and Environment.Recommended remedial levels for nitrate and ammonia in soils[R].Topeka Kansas,America:Kansas Department of Health and Environment,2002:1-2.