空间伸展结构变形与振动分布式光纤监测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on spatial deployable structure deformation and vibration monitoring with distributed optical fiber
  • 作者:何凯 ; 曾捷 ; 林秋红 ; 龚晓静 ; 康健
  • 英文作者:He Kai;Zeng Jie;Lin Qiuhong;Gong Xiaojing;Kang Jian;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics & Astronautics;General Office of China Academy of Space Technology;Institute Clément ADER UMR CNRS 5312(INSA/UPS/ISAE/Mines Albi) ,University De Toulouse;
  • 关键词:柔性复合材料伸展结构 ; 光纤传感器 ; 形态反演算法 ; 变形监测 ; 振动监测
  • 英文关键词:deployable structure of flexible composite materials;;optical fiber sensor;;morphological inversion algorithm;;deformation monitoring;;vibration monitoring
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:南京航空航天大学机械结构力学及控制国家重点实验室;中国空间技术研究院总体部;法国图卢兹大学法国国家科学研究中心Clement ADER航空结构实验室(UMR CNRS 5312);
  • 出版日期:2018-02-15
  • 出版单位:仪器仪表学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金-联合基金(U1537102);; 航空科学基金(20152852036);; 上海航天科技创新基金(SAST2015062);; 中央高校基本科研业务费专项资金(NS2016004);; 机械结构力学及控制国家重点实验室开放课题(MCMS-0516K01);; 江苏高校优势学科建设工程基金(PAPD)项目资助
  • 语种:中文;
  • 页:YQXB201802007
  • 页数:10
  • CN:02
  • ISSN:11-2179/TH
  • 分类号:59-68
摘要
空间伸展结构是一种最基本的可展开折叠单元,广泛应用于大型展开天线、太阳帆板以及空间机械臂等航天领域,针对此类结构服役状态的智能辨识对于目前开展高轨深空探测研究具有重要意义。为此,提出一种基于准分布式光纤传感器的空间伸展结构变形与振动实时监测技术。借助MSC.Patran/Nastran有限元分析方法,数值模拟得到碳纤维复合材料柔性空间伸展结构在不同载荷作用下的应变、位移响应规律以及振动模态特征。分别研究了基于曲率和弧长信息曲线重构的结构变形反演算法,光纤光栅中心波长偏移量与振动特征关系解析模型,计算得到空间伸展结构沿展开方向不同位置的坐标信息。在此基础上,通过在柔性复合材料伸展结构展向布设离散光纤光栅传感器,实时采集应变分布与变化信息,进而推导相应位置曲率特征,实现不同加载模式下的伸展结构形态重构,变形反演相对误差约为2.5%。此外,借助准分布式光纤传感器不仅可以得到伸展结构对应的变形实时响应曲线,同时还能够获取其前三阶固有模态和振型特征,所测频率与仿真结果吻合度较好,平均误差约为0.67%。研究结果表明,所提方法具有非视觉测量、实时性好以及多种功能复用等优点,能够为未来及时准确获取空间伸展结构姿态,实现空间形态自适应调节与在轨振动主动控制提供有力保障。
        Spatial deployable structure is one of the most basic deployable folding elements. It is widely used in large deployable antenna,solar array and space manipulator and other aerospace areas. At present,intelligent identification of the service state of such structures is of great significance for the development of high orbit deep space exploration. Therefore,a real-time monitoring technique for deformation and vibration of space deployable structure based on quasi-distributed optical fiber sensor is proposed in this paper. With the MSC. Patran/Nastran finite element analysis method,the strain,displacement response regularity and vibration modal characteristics of the flexible deployable structure based on carbon fiber composite under different loads are obtained by numerical simulation. The inversion algorithm of structural deformation based on curvature and arc length information curve reconstruction is studied. The analytical model of relationship between center wavelength offset and vibration characteristics of fiber gratings are formulated respectively. The coordinate information of space deployable structure in different positions along the stretch direction is achieved. On the basis,a series of discrete fiber Bragg grating sensors are deployed along stretch direction of the flexible composite deployable structure. The strain distribution and variation information are acquired in real time. The curvature characteristics of the corresponding position are deduced to realize the morphological reconstruction of the deployable structure under different loading modes. The relative error of deformation inversion is approximate 2. 5%. In addition,the real time deformation response curves corresponding to the deployable structure can beobtained with the quasi-distributed optical fiber sensor. Its first three order natural modal and vibration characteristics are also measured and the frequencies are consistent with the simulation results. The average error is approximate 0. 67%. The experimental results show that the proposed method has the advantages of non-visual measurement,excellent real-time performance and multiple functional multiplexing,which can help identify the posture of spatial deployable structure timely and accurately in the future. It can also realize the adaptive adjustment of the space form as well as the active control of the in-orbit vibration.
引文
[1]NICOLAS M J.Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings[J].Dissertations&Theses-Grad Works,2013:89.
    [2]WEST S T,WHITE C,CELESTINO C,et al.Design and testing of deployable carbon fiber booms for cubesat non-gossamer applications[C].56th AIA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Cofenrence,2015,doi:org/10.2541/6.2015-0206.
    [3]秦丽华,刘成国,邵春收,等.空间天线展开机构运动学分析[J].导弹与航天运载技术,2017(4):26-29.QIN L H,LIU CH G,SHAO CH SH,et al.Motion analysis on structure for space deployment antenna[J].Miss and Space Vehicles,2017(4):26-29.
    [4]ROESTHUIS R J,KEMP M,DOBBELSTEEN J J V D,et al.Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors[J].IEEE/ASME Transactions on Mechatronics,2014,19(4):1115-1126.
    [5]BLANDINO J,DUNCAN R,NUCKELS M,et al.Threedimensional shape sensing for inflatable booms[J].Aiaa Journal,2015,doi:10.2514/6.2005-1807.
    [6]MALLA R B,VILA L J.Dynamic impact force in an axial member with coupled effects of structural vibration and various support conditions[J].Engineering Structures,2017,144(8):210-224.
    [7]易金聪,朱晓锦,张合生,等.模拟高性能飞行器翼面结构形态的非视觉检测[J].振动、测试与诊断,2014,34(1):20-26.YI J C,ZHU X J,ZHANG H SH,et al.Theory and experimental verification on valueless piezoelectric pump with variable cross section Y-shape tubes[J].Journal of Vibration,Measurement&Diagnosis,2014,34(1):20-26.
    [8]娄小平,陈仲卿,庄炜,等.非正交FBG柔杆空间形状重构误差分析及标定[J].仪器仪表学报,2017,38(2):386-393.LOU X P,CHEN ZH Q,ZHUANG W,et al.Error analysis and calibration for FBG shape reconstruction based on non-orthogonal curvatures[J].Chinese Journal of Scientific Instrument,2017,38(2):386-393.
    [9]朱晓锦,季玲晓,张合生,等.基于空间正交曲率信息的三维曲线重构方法分析[J].应用基础与工程科学学报,2011,19(2):305-313.ZHU X J,ZHU L X,ZHANG H SH,et al.Analysis of 3D curve reconstruction method using orthogonal curvatures[J].Journal of Basic Science And Engineering,2011,19(2):305-313.
    [10]刘铁根,王双,江俊峰,等.航空航天光纤传感技术研究进展[J].仪器仪表学报,2014,35(8):1681-1692.LIU T G,WANG S H,JIANG J F,et al.Advances in optical fiber sensing technology for aviation and aerospace application[J].Chinese Journal of Scientific Instrument,2014,35(8):1681-1692.
    [11]ALSING P M,D.A.CARDIMONA D A,HUANG D H,et al.Advanced space-based detector research at the air force research laboratory[J].Infrared Physics&Technology,2007,50(2-3):89-94.
    [12]KO W L,RICHARDS W L,TRAN V T.Displacement theories for in-flight deformed shape predictions of aerospace structures[R].NASA Technical Reports,2007.
    [13]张伦伟,钱晋武,章亚男,等.基于FBG传感网络的新型内窥镜形状实时检测系统[J].机械工程学报,2006,42(2):177-182.ZHANG L W,QIAN J W,ZHANG Y N,et al.An Innovative endoscopic shape real-time detection system based on FBG network[J].Chinese Journal of Mechanical Engineering,2006,42(2):177-182.
    [14]YI J,ZHU X,ZHANG H,et al.Spatial shape reconstruction using orthogonal fiber Bragg grating sensor array[J].Mechatronics,2012,22(6):679-687.
    [15]黄建明,张明达.光纤光栅应变传感器温度补偿[J].国外电子测量技术,2017,36(5):74-77.HUANG J M,ZHANG M D.Temperature compensation of fiber Bragg grating strain sensors[J].Foreign Electronic Measurement Technology,2017,36(5):74-77.
    [16]SANTE R D.Fibre optic sensors for structural health monitoring of aircraft composite structures:Recent advances and applications[J].Sensors,2015,15(8):18666-18713.
    [17]朱晓锦,张合生,谢春宁,等.一种基于曲率信息的太空帆板空间曲面拟合算法分析[J].系统仿真学报,2007,19(11):2496-2499.ZHU X J,ZHANG H SH,XIE CH N.Analysis of curve surface fitting algorithm based on curvatures for space sailboard structure[J].Journal of System Simulation,2007,19(11):2496-2499.
    [18]LIU CH X,YU Y L,HONG J.Measurement of the natural frequency of bench drill based on fiber Bragg grating[J].Laser&Optoelectronics Progress,2013,50(2):100-104.
    [19]WANG R.Mechanism research of rolling mill coupled vibration[J].Journal of Mechanical Engineering,2013,49(12):66.
    [20]李舜酩,郭海东,李殿荣.振动信号处理方法综述[J].仪器仪表学报,2013,34(8):1907-1915.LI SH M,GUO H D,LI D R.Review of vibration singal processing methods[J].Chinese Journal of Scientific Instrument,2013,34(8):1907-1915.
    [21]JIANG D,SHAN Y,WANG D,et al.Research on magnetic levitation absolute vibration measurement method in vehicles[J].Instrumentation,2014,1(2):38-49.