高岩温隧道初期支护应力场及安全性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Stress Field and Security of Primary Support in High Rock Temperature Tunnel
  • 作者:唐兴华 ; 王明年 ; 童建军 ; 董从宇 ; 张冲
  • 英文作者:TANG Xinghua;WANG Mingnian;TONG Jianjun;DONG Congyu;ZHANG Chong;Key Laboratory of Transportation Tunnel Engineering,Ministry of Education,Southwest Jiaotong University;School of Civil Engineering,Southwest Jiaotong University;The Third Railway Survey and Design Institute Group Corporation;
  • 关键词:高岩温隧道 ; 初期支护 ; 拉应力 ; 压应力 ; 安全性
  • 英文关键词:high rock temperature tunnel;;initial support;;tensile stress;;compressive stress;;security
  • 中文刊名:XNJT
  • 英文刊名:Journal of Southwest Jiaotong University
  • 机构:西南交通大学交通隧道工程教育部重点实验室;西南交通大学土木工程学院;铁道第三勘察设计院集团有限公司;
  • 出版日期:2018-06-06 19:55
  • 出版单位:西南交通大学学报
  • 年:2019
  • 期:v.54;No.245
  • 基金:国家自然科学基金面上资助项目(51578458);; 高等学校博士学科点专项科研基金(博导类)资助项目(20130184110008);; 中央高校基本科研业务费专项资金资助项目(2682013CX005EM)
  • 语种:中文;
  • 页:XNJT201901005
  • 页数:7
  • CN:01
  • ISSN:51-1277/U
  • 分类号:36-42
摘要
为评价高岩温隧道施工过程中初期支护的安全性,研究了高岩温隧道初期支护温度场、应力场的施工期特征和演变规律.首先通过热-应力耦合三维数值模拟和现场测试,研究了不同原始围岩温度场中,高岩温隧道开挖过程中初期支护温度场的变化规律;其次考虑围岩荷载和温度荷载共同作用,分析了高岩温隧道开挖过程中初期支护应力场的变化规律;最后基于初期支护应力值,评价了高岩温隧道初期支护的安全性.研究结果表明:受施工通风影响,初期支护温度在隧道开挖后急剧降低,约5 d后基本与洞内气温一致;受施工工序影响,初期支护最大拉应力先增后减,最大压应力持续增加;随着围岩初始温度增大,在不同施工步序中,初期支护的最大拉应力和最大压应力均增大;初期支护安全性由喷射混凝土抗拉强度控制,当围岩初始温度大于60℃时,C25喷射混凝土将发生拉裂破坏.
        The characteristics and changing behaviour of the initial support in high rock temperature tunnel were studied to evaluate security during the construction process. First,the temperature field of the initial support was analysed during the construction process of high rock temperature tunnel by using thermal-stress coupling numerical simulations and in-situ testing. Second,the stress field of the initial support,which bore the rock load and temperature load,was analysed over the construction process of high rock temperature tunnel. Finally,based on the stress of primary support,the security of primary support in high rock temperature tunnel was evaluated.The results show that the temperature of primary support sharply decreases after tunnel excavation and is equivalent to the air temperature in the tunnel after about 5 days. During the construction process,the maximum tensile stress of primary support first increases and then decreases. However,the maximum compressive stress always increases. With increased initial rock temperature,the maximum tensile and compressive stress of the primary support also increase. The security of the primary support depends on the tensile strength of shotcrete,and the C25 shotcrete will be damaged if the initial rock temperature exceeds 60℃.
引文
[1]铁道部经济规划研究院.铁路隧道工程施工技术指南:TZ204-2008[S].北京:中国铁道出版社,2008.
    [2]中华人民共和国交通运输部.公路隧道施工技术规范:JTG F60-2009[S].北京:人民交通出版社,2009.
    [3]袁培国.超高地温条件下引水隧洞施工关键技术探讨[J].水利水电技术,2014,45(4):101-106.YUAN Peiguo.Discussion on key technologies for construction of water diversion tunnel under super-high ground temperature[J].Water Resoures and Hydropower Engineering,2014,45(4):101-106.
    [4]赵国斌,程向民,孙旭宁.齐热哈塔尔水电站引水隧洞高地温表现与对策[J].资源环境与工程,2013,27(4):566-567,591.ZHAO Guobin,CHENG Xiangmin,SUN Xuning. Manifestation and countermeasure of high geo-temperature of Qirihataer hydro-power station diversion tunnel[J].Resources Environment&Engineering,2013,27(4):566-567,591.
    [5]邵珠山,乔汝佳,王新宇.高地温隧道温度与热应力场的弹性理论解[J].岩土力学,2013,34(增刊1):1-8.SHAO Zhushao,QIAO Rujia,WANG Xinyu.Elasticity solution for temperature and stress fields of tunnels with high geothermal temperature[J].Rock and Soil Mechanics,2013,34(S1):1-8.
    [6]刘乃飞,李宁,余春海,等.布仑口水电站高温引水发电隧洞受力特性研究[J].水利水运工程学报,2014(4):14-21.LIU Naifei,LI Ning,YU Chunhai,et al.Analysis of mechanical characteristics for high-temperature diversion tunnel of Bulunkou hydropower station[J].Hydroscience and Engineering,2014(4):14-21.
    [7]郭进伟,方焘,卢祝清.高地温隧洞热-结构耦合分析[J].铁道建筑,2010(6):77-79.GUO Jinwei,FANG Tao,LU Zhuqing.Thermal-stress analysis of high rock wall tunnel[J].Railway Engineering,2010(6):77-79.
    [8]许富贵,蒋和洋,倪晓燕,等.热-应力耦合作用下深部软岩隧洞大变形三维数值模拟分析[J].工程建设,2007,39(2):5-9.XU Fugui,JIANG Heyang,NI Xiaoyan,et al.3-Dimension numerical simulation analysis for large strain of deep soft rock twmel under thermo-mechanical coupling effect[J].Engineering Construction,2007,39(2):5-9.
    [9]王玉锁,叶跃忠,杨超,等.高地热大埋深环境隧道支护结构受力分析[J].西南交通大学学报,2014,49(2):260-267.WANG Yusuo,YE Yuezhong,YANG Chao,et al.Stress mechanism of lining structure of high geothermal and deep buried tunnel[J].Journal of Southwest Jiaotong University,2014,49(2):260-267.
    [10]周建军,彭浩,邓华.反复温度-应力祸合作用下引水隧洞变形特征[J].人民黄河,2015,37(7):133-137.ZHOU Jianjun,PENG Hao,DENG Hua.Deformation features of diversion tunnel under repeated action of coupled thermal-stress[J].Yellow River,2015,37(7):133-137.
    [11]李书杰.高地温隧洞衬砌结构应力变形分析及降温措施[J].水利规划与设计,2016,1:109-113.
    [12]中华人民共和国铁道部.铁路隧道设计规范:TB10003-2005[S].北京:中国铁道出版社,2005.
    [13]铁道部第二勘测设计院.铁路工程设计技术手册(隧道)[M].北京:中国铁道出版社,1995:25-43.
    [14]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.混凝土结构设计规范:GB50010-2010[S].北京:中国建筑工业出版社,2010.
    [15]程良奎.喷射混凝土[M].北京:中国建筑工业出版社,1990:29-34.
    [16]杨林德.公路施工手册:隧道[M].北京:人民交通出版社,2011:58-63.