低频宽带薄层吸波材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances of broadband and thin microwave absorbing materials for low frequency
  • 作者:张钊 ; 王峰 ; 张新全 ; 李维 ; 官建国
  • 英文作者:ZHANG Zhao;WANG Feng;ZHANG Xinquan;LI Wei;GUAN Jianguo;The First Aircraft Institute of AVIC;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:雷达隐身 ; 电磁兼容 ; 吸收剂 ; 超材料 ; 吸波涂料
  • 英文关键词:radar stealth;;electromagnetic compatibility;;microwave absorbent;;metamaterial;;absorbing coating
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:航空工业第一飞机设计研究院;武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2019-06-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.429
  • 基金:国家自然科学基金资助项目(51577138)
  • 语种:中文;
  • 页:GNCL201906007
  • 页数:8
  • CN:06
  • ISSN:50-1099/TH
  • 分类号:44-51
摘要
随着电子和通讯技术的快速发展以及军用雷达波频率不断向低频扩展,对低频宽带薄层吸波材料的需求与现有吸波材料相对较差的低频性能之间的矛盾日益突出。近年来,国内外针对低频宽带薄层吸波材料也开展了大量研究,包括基于各类新型高磁导率吸收剂的吸波涂层材料及新型的超材料。对该领域的重要研究成果和最新研究进展进行综述。
        The rapid development of electronic devices, wireless communication technologies and low frequency Radar systems bring forward requirements on broadband thin microwave absorbers working at low frequencies. However, existing microwave absorbers are usually of poor performance in low frequency waveband. In recent years, considerable efforts were made on high performance low frequency microwave absorbers by researchers all over the world. These efforts focus on various high magnetic permeability absorbents for thin absorbing coatings, and the emerging metamaterial absorbers. This paper is devoted to cover the main progress on the above aspects.
引文
[1] Zhang Lixin,Wei Wei,Li Ting.Current situation and development of air-defense radar[J].Electronic Technology & Software Engineering,2018,132(10):85-86(in Chinese).张立新,魏韡,李亭.国土防空雷达现状及发展[J].电子技术与软件工程,2018,132(10):85-86.
    [2] Cheng Xiangge,Li Hongliang,You Xinmin,et al.Preparation of single-layer thinnest radar absorbing coatings[J].Guangdong Chemical Industry,2011,38(12):27-28(in Chinese).承湘舸,李洪亮,尤欣敏,等.薄型单层结构雷达吸波涂料的制备[J].广东化工,2011,38(12):27-28.
    [3] Rozanov K N.Ultimate thickness to bandwidth ratio of radar absorbers[J].IEEE Transactions on Antennas and Propagation,2000,48(8):1230-1234.
    [4] Snoek J L.Dispersion and absorption in magnetic ferrites at frequencies above one MC/S[J].Physica,1948,14(4):207-217.
    [5] Acher O,Dubourg,Sébastien.A generalization of Snoek's law to ferromagnetic films and composites[J].Physical Review B,2007,77(10).
    [6] Kittel C.On the Theory of Ferromagnetic Resonance Absorption[J].Physical Review 1948,73 (2):155-161.
    [7] Herzer G.Handbook of Magnetic Materials[M].Amsterdam:Elsevier,1997:415-462.
    [8] Mchenry M E,Willard M A,Laughlin D E.Amorphous and nanocrystalline materials for applications as soft magnets[J].Progress in Materials Science,1999,44(4):291-433..
    [9] Herzer G.Modern soft magnets:amorphous and nanocrystalline materials[J].Acta Materialia 2013,61(3):718-734.
    [10] Lagarkov A N,Rozanov K N.High-frequency behavior of magnetic composites[J].Journal of Magnetism and Magnetic Materials,2009,321(14):2082-2092.
    [11] Kotnala R K,Shah J.Handbook of Magnetic Materials[M].Amsterdam:Elsevier,2015:291-379.
    [12] Pardavi-Horvath M.Microwave applications of soft ferrites[J].Journal of Magnetism & Magnetic Materials,2000,215(12):171-183.
    [13] Yang Kaixin.The development and application of ferrite absorbing materials[J].Journal of Magnetic Materials and Devices,1996(3):19-23(in Chinese)阳开新.铁氧体吸波材料及其应用[J].磁性材料及器件,1996(3):19-23.
    [14] Tsutaoka T.Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials[J].Journal of Applied Physics,2003,93(5):2789-2796.
    [15] Wang Qi,Guan Jianguo,Liu Shiquan,et al.The effect of ion substitution on structure and microwave absorbing property in hexaferrite RAM[J].Bulletin of the Chinese Ceramic Society,2005,24(2):66-71(in Chinese).王琦,官建国,刘世权,等.离子取代与六角铁氧体RAM的结构及微波吸收性能[J].硅酸盐通报,2005,24(2):66-71.
    [16] Matsumoto M,Miyata Y.A gigahertz‐range electromagnetic wave absorber with wide bandwidth made of hexagonal ferrite[J].Journal of Applied Physics,1996,79(8):5486-5488.
    [17] Dosoudil R,U?áková M,Franek J,et al.RF electromagnetic wave absorbing properties of ferrite polymer composite materials[J].Journal of Magnetism & Magnetic Materials,2006,304(2):755-757.
    [18] Wang Wei,Guan Jianguo,Zhao Suling,et al.Microwave permeability change of FeCo nanocrystalline during high energy ball milling[J].Journal of Wuhan University of Technology-Mater Sci Ed,2006,21(1):16-18.
    [19] Wu L Z,Ding J,Jiang H B,et al.Particle size influence to the microwave properties of iron based magnetic particulate composites[J].Journal of Magnetism and Magnetic Materials,2005,285(1-2):233-239.
    [20] Yang Rueybin,Liang Wenfan.Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers[J].Journal of Applied Physics,2011,109(7):178.
    [21] Hu Jing,Xie Guozhi,Gu jiaxin,et al.Low frequency radar wave absorbing performance of carbonyl iron powder modified by compound auxiliary agent[J].Materials Review,2018,32(4):520-524(in Chinese).胡晶,谢国治,顾家新,等.多元助剂改性羰基铁粉雷达波低频吸波性能研究[J].材料导报,2018,32(4):520-524.
    [22] Long Chang,Xu Baocai,Han Chuanzhou,et al.Flaky core-shell particles of iron@iron oxides for broadband microwave absorbers in S and C bands[J].Journal of Alloys and Compounds,2017,709:735-741.
    [23] Tong Guoxiu,Wang Wei,Guan Jianguo,et al.Properties of Fe/SiO2 core-shell composite particles with different nanoshell thickness[J].Journal of Inorganic Materials,2006,21(6):1461-1466(in Chinese).童国秀,王维,官建国,等.SiO2纳米壳的厚度对羰基铁/SiO2核壳复合粒子的性能影响[J].无机材料学报,2006,21(6):1461-1466.
    [24] Tong Guoxiu,Guan Jianguo,Wang Wei,et al.Preparation and properties of carbonyl iron/Al2O3 core-shell composite particles[J].Chinese Journal of Materials Research,2008,22(1):102-106(in Chinese).童国秀,官建国,王维,等.羰基铁/Al2O3核壳复合粒子的制备和性能[J].材料研究学报,2008,22(1):102-106.
    [25] He Jinghua,Wang Wei,Guan Jianguo.Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz[J].Journal of Applied Physics,2012,111(9):093924.
    [26] Han Rui,Qiao Liang,Wang Tao,et al.Microwave complex permeability of planar anisotropy carbonyl-iron particles[J].Journal of Alloys & Compounds,2011,509(6):2734-2737.
    [27] Wang Wei,Guo Jiaxiong,Long Chang,et al.Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption[J].Journal of Alloys & Compounds,2015,637:106-111.
    [28] Min Dandan,Zhou Wancheng,Qing Yuchang,et al.Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field[J].Journal of Materials Science,2017,52(4):2373-2383.
    [29] Liu Chang,Cai Jun,Duan Yubing,et al.Aligning flaky FeSiAl particles with a two-dimensional rotating magnetic field to improve microwave-absorbing and shielding properties of composites[J].Journal of Magnetism & Magnetic Materials,2018,458:116-122.
    [30] Liu Chao,Yuan Yong,Jiang Jiantang,et al.Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process[J].Journal of Magnetism and Magnetic Materials,2015,395:152-158.
    [31] Yao Y,Zhang C,Fan Y,et al.Preparation and microwave absorbing property of porous FeNi powders[J].Advanced Powder Technology,2016,27(5):2285-2290.
    [32] Cheng Y,Ji G,Li Z,et al.Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band:Effect of Fe/Co atomic ratio[J].Journal of Alloys and Compounds,2017,704:289-295.
    [33] Zhou T D,Tang J K ,Wang Z Y.Influence of Cr content on structure and magnetic properties of Fe-Si-Al-Cr powders[J].Journal of Magnetism and Magnetic Materials,2010,322(17):2589-2592.
    [34] Klement W K,Willens R H,Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J].Nature,1960,187(4740):869-870.
    [35] Shimba K,Tezuka N,Sugimoto S.Magnetic and microwave absorption properties of polymer composites with amorphous Fe-B/Ni-Zn ferrite nanoparticles[J].Materials Science and Engineering:B,2012,177(2):251-256.
    [36] Kim M S,Min E H,Koh J G.Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber[J].Journal of Magnetism and Magnetic Materials,2009,321(6):581-585.
    [37] Lee K S,Yun Y C,Jeong I B,et al.Microwave absorbing properties of flaky Fe-Si-Al alloy powder-rubber composites[J].Materials Science Forum,2007,534-536:1465-1468.
    [38] Matsumoto M,Miyata Y.Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles[J].IEEE Transactions on Magnetics,1997,33(6):4459-4464.
    [39] Wang Xian,Gong Rongzhou,Li Peigang,et al.Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes[J].Materials Science & Engineering A,2007,466(1):178-182.
    [40] Cao Qi,Gong Rongzhou,Feng Zekun,et al.Microwave absorption property of Fe-Si-Al magnetic alloy powders[J].The Chinese Journal of Nonferrous Metal,2006,16(3):524-529(in Chinese).曹琦,龚荣洲,冯则坤,等.Fe-Si-Al系合金粉微波吸收特性[J].中国有色金属学报,2006,16(3):524-529.
    [41] Landy N I,Sajuyigbe S,Mock J J,et al.Perfect metamaterial absorber[J].Physical Review Letters,2008,100(20):207402.
    [42] Yuan Wei,Yang Jin,Wang Yilong,et al.Recent advances in broadband metamaterial absorbers[J].Materials Review,2016(21):104-108(in Chinese).院伟,杨进,王一龙,等.宽带吸波超材料的研究进展[J].材料导报,2016(21):104-108.
    [43] Chen Haiyan,Zhang Huibin,Deng Longjiang.Design of an ultra-thin magnetic-type radar absorber embedded with FSS[J].IEEE Antennas and Wireless Propagation Letters,2010,9(1):899-901.
    [44] Li Wei,Wu Tianlong,Wang Wei,et al.Broadband patterned magnetic microwave absorber[J].Journal of Applied Physics,2014,116(4):388.
    [45] Li Wei,Wu Tianlong,Wang Wei,et al.Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers[J].Applied Physics Letters,2014,104(2):1189.
    [46] Yoo Y J,Ju S,Park S Y,et al.Metamaterial absorber for electromagnetic waves in periodic water droplets[J].Scientific Reports,2015,5:14018.
    [47] Kim H K,Lee D,Lim S.Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator[J].Applied Optics,2016,55(15):4113-4118.
    [48] Zhang Fuli,Feng Shuqi,Qiu Kepeng,et al.Mechanically stretchable and tunable metamaterial absorber[J].Applied Physics Letters,2015,106(9):091907.
    [49] Lei Ming,Feng Ningyue,Wang Qingmin,et al.Magnetically tunable metamaterial perfect absorber[J].Journal of Applied Physics,2016,119(24):244504.
    [50] Wang Benxin,Wang Guizhen.Temperature tunable metamaterial absorber at THz frequencies[J].Journal of Materials Science:Materials in Electronics,2017,28(12):8487-8493.
    [51] Zhang Yuping,Li Yue,Cao Yanyan,et al.Graphene induced tunable and polarization-insensitive broadband metamaterial absorber[J].Optics Communications,2017,382:281-287.
    [52] Zhao Jie,Cheng Qiang,Chen Jie ,et al.A tunable metamaterial absorber using varactor diodes[J].New Journal of Physics,2013,15(4):043049.
    [53] Li Wei,Wei Jia,Wang Wei,et al.Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range[J].Materials & Design,2016,110:27-34.