纳米碳材料的辐射改性及其应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Radiation Modification of Carbon Nanomaterials and Their Application Progress
  • 作者:代培 ; 马慧玲 ; 矫阳 ; 翟茂林 ; 曾心苗
  • 英文作者:DAI Pei;MA Huiling;JIAO Yang;ZHAI Maolin;ZENG Xinmiao;Beijing Key Laboratory of Radiation Advanced Materials,Beijing Research Center for Radiation Application;Beijing National Laboratory for Molecular Sciences,Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science,College of Chemistry and Molecular Engineering,Peking University;
  • 关键词:辐射改性 ; 纳米碳材料 ; 碳纳米管 ; 石墨烯 ; 碳纳米纤维
  • 英文关键词:radiation modification;;carbon nanomaterial;;carbon nanotube;;graphene;;carbon nanofiber
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:北京市射线应用研究中心辐射新材料北京市重点实验室;北京大学化学与分子工程学院放射化学与辐射化学重点学科实验室;
  • 出版日期:2019-02-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:中国博士后科学基金(2018M631377);; 国家自然科学基金(11505011; 11405168)~~
  • 语种:中文;
  • 页:CLDB201903002
  • 页数:11
  • CN:03
  • ISSN:50-1078/TB
  • 分类号:6-16
摘要
碳材料是自然界中与人类关系最为密切的重要材料之一,伴随着纳米科技的发展,具有纳米结构的功能碳材料的研究逐渐深入,已经出现了石墨烯、碳纳米管等性能优异的纳米碳材料。纳米碳材料具有机械强度高、导热导电能力强等诸多优点以及环境友好特性,能够满足绿色化学和可持续性发展的要求,因而其在复合材料中的应用成为相关领域的研究热点。纳米碳材料的引入可以显著提高复合材料的性能,并且还可以赋予材料新的性能,其在功能复合材料方面有良好的应用前景。然而,由于纳米碳材料自身的结构特点,其在溶剂和聚合物基体中的分散性、相容性和稳定性较差,这一直阻碍着其性能在复合材料中的发挥,甚至可能导致材料的整体性能降低。因此,提高纳米碳材料的分散能力和使用性能一直是研究的难点和热点。通过化学的方法提高纳米碳材料的分散能力,操作过程复杂,生产成本增加,且化学品试剂大多具有很强的毒性。近年来,纳米碳材料的辐射改性受到各界广泛的重视,利用辐射技术制备和官能化修饰纳米碳材料,可以显著提高纳米碳材料的分散能力和与基体的相容性。辐射刻蚀和还原技术用于纳米碳材料的制备时,可对其结构进行设计,例如辐射制备短切碳纳米管,降低了碳纳米管的长度,可有效提高分散能力。利用高能射线还可将氧化石墨烯进行还原,提供简单高效制备石墨烯的新方法和新思路。辐射接枝可用于纳米碳材料的表面修饰,例如在碳纳米管或石墨烯表面接枝聚合含碳碳双键的酯和芳香类聚合物,提高了纳米碳材料在溶剂和聚合物基体中的分散性能,有助于制备各种高性能功能材料。本文综述了近年来辐射技术在碳纳米管、氧化石墨烯及碳纳米纤维等材料改性及其应用方面的研究进展,总结了这三种纳米碳材料的优异性能及其复合材料在生物医药、能源、智能材料等领域的最新研究进展,分析了辐射改性纳米碳材料的优势,并对今后辐射技术和纳米碳材料相结合的研究方向进行了展望。随着对纳米碳材料辐射改性的研究和产业化的不断深入,分散性能优异的纳米碳材料有望实现大规模低成本的连续批量生产,未来在功能化和高性能化复合材料等领域的应用也将会更加广阔。
        Carbon material is one of the most important material in nature,possessing closest relationship with human beings. With the development of nano science and technology,intensive studies have been carried out on the functional carbon materials with nanostructure,and graphene,carbon nanotube and other carbon nanomaterials with excellent performances have emerged. The carbon nanomaterials feature mechanical strength,thermal and electrical conductivity,and enviro nment-friendliness,which can satisfy the requirements of green chemistry and sustainable development. Accordingly,its application in composite materials has become a research focus in related fields. The incorporation of carbon nanomaterials can significantly improve the properties of composite materials,and may even endow the composite materials with new properties.Therefore,carbon nanomaterials exhibit great application prospect in the fields of advanced functional materials.However,suffering from their own structural defect,carbon nanomaterials present poor dispersion,compatibility and stability in solvent and polymer matrix,which blocks the exerting of performance of carbon nanomaterials,and may even leads to the degradation of the overall properties of composite materials. Consequently,optimizing the dispersibility and performance of carbon nanomaterials has always been a difficult and hot research topic. Chemical method can be adopted to optimize the dispersibility of carbon nanomaterials,while its operation process is complicated with high production cost,and most of the chemical reagents show strong toxicity. In recent years,the radiation modification of carbon nanomaterials has received extensive attention. The preparation and functionalization of carbon nanomaterials by radiation technology can significantly improve the dispersibility and compatibility with the matrix of carbon nanomaterials.Radiation etching and reduction are simple and efficient methods to prepare carbon nanomaterials,by which the structure of carbon nanomaterials can be designed. For example,the short cut carbon nanotubes can be prepared by radiation,the obtained carbon nanotubes possess reduced length and improved dispersibility. Moreover,The graphene oxide can also be reduced by high energy ray,which provides a new method and new idea for the preparation of graphene with simple and high efficiency. Radiation grafting may be employed for surface modification of carbon nanomaterials. For instance,the graft polymerization of ester and aromatic polymers containing carbon and carbon double bonds on the surface of carbon nanotubes or graphene improves the dispersion properties of carbon nanomaterials in solvent and polymer matrix,which is helpful to the preparation of various high-performance functional materials.In this article,recent advances in radiation modification and application of carbon nanotubes,graphene oxide and carbon nanofibers are reviewed. The excellent properties of these three kinds of carbon nanomaterials and the latest progress of their composite materials in biotechnology and medicine,smart material and energy fields are summarized. The advantages of radiation modified carbon nanomaterials are analyzed,and the future research direction of combining radiation technology with carbon nanomaterials is proposed. With the development of research on radiation modification of carbon nanomaterials,the carbon nanomaterials with good dispersion quality are expected to achieve large-scale and low-cost continuous mass production. In the future,there will be more extensive application prospects of functional carbon nanomaterial composites with high performances.
引文
1 Sun Z K,Liu Y,Li B,et al.ACS Nano,2013,7(10),8706.
    2 Yin P T,Shah S,Chhowalla M,et al.Chemical Reviews,2015,115(7),2483.
    3 Cha C Y,Shin S R,Annabi N,et al.ACS Nano,2013,7(4),2891.
    4 Baughman R H,Zakhidov A,Heer W A.Science’s Compass,2002,297(2),787.
    5 Jariwala D,Sangwan V K,Lauhon L J,et al.Chemical Society Reviews,2013,42(7),2824.
    6 Zhang B T,Zheng X X,Li H F,et al.Analytica Chimica Acta,2013,784(19),1.
    7 Bashar M M,Siddiquee M A B,Khan M A.Carbohydrate Polymers,2015,120,92.
    8 Lijima S.Nature,1991,354(6348),56.
    9 Dai H.Surface Science,2002,500(1-3),218.
    10 Novoselov K S,Geim A K,Morozov S V,et al.Science,2004,306(5696),666.
    11 Wang L,Pan Y.Carbon,2011,49(5),1806.
    12 Park J,Yan M.Accounts of Chemical Research,2013,46(1),181.
    13 Wu X,Li F,Wu W,et al.Vacuum,2014,101(3),53.
    14 Hummers J R W S,Offeman R E.Journal of the American Chemical Society,1958,80(6),1339.
    15 Qin X,Xie Z,Xie Q.Electronic Components and Materials,2014,33(3),1(in Chinese).覃信茂,谢卓成,谢泉.电子元件与材料,2014,33(3),1.
    16 Stankovich S,Dikin D A,Piner R D,et al.Carbon,2007,45(7),1558.
    17 Tang X Z,Cao Z W,Zhang H B,et al.Chem Commun,2011,47(11),3084.
    18 Baek J B,Lyons C B,Tan L S.Macromolecules,2004,37(22),8278.
    19 Tibbetts G G,Lake M L,Strong K L,et al.Composites Science and Technology,2007,67(7),1709.
    20 Jong K P,Geus J W.Catalysis Reviews-Science and Engineering,2000,42(4),481.
    21 Evora M C,Klosterman D,Lafdi K,et al.Carbon,2010,48(7),2037.
    22 Brüser V,Heintze M,Brandl W,et al.Diamond and Related Materials,2004,13(4),1177.
    23 Rasheed A,Dadmun M D,Britt P F.Journal of Polymer Science Part B:Polymer Physics,2010,44(21),3053.
    24 Liu J,Rinzler A G,Dai H J,et al.Science,1998,280(5367),1253.
    25 Coleman J N,Khan U,Gun’ko Y K.Advanced Materials,2006,18(6),689.
    26 Gu Z,Peng H,Hauge R H,et al.Nano Letters,2002,2(9),1009.
    27 Kang Z,Wang E,Mao B,et al.Materials Letters,2006,60(17-18),2266.
    28 Kukoveczá,KanyóT,Kónya Z,et al.Carbon,2005,43(5),994.
    29 Tsang S C,Chen Y K,Harris P J F,et al.Nature,1994,372(6502),159.
    30 Sun H,Dai Y,Li J,et al.Materials Review B:Research Papers,2010,24(7),22(in Chinese).孙浩,戴耀东,李江苏,等.材料导报:研究篇,2010,24(7),22.
    31 Sun H,Yu J,Ma N,et al.Atomic Energy Science and Technology,2011,45(4),474(in Chinese).孙浩,余健开,马南茹,等.原子能学技术,2011,45(4),474.
    32 Xu S,Liu W,Li Z,et al.New Chemical Materials,2008,36(3),44(in Chinese).许书珍,刘文涛,李中原,等.化工新型材料,2008,36(3),44.
    33 Wang C,Chen Y,Zhuo K,et al.Chemical Communications,2013,49(32),3336.
    34 Zhang Y,Ma H L,Zhang Q,et al.Journal of Materials Chemistry,2012,22(26),13064.
    35 Li J,Zhang B,Li L,et al.Radiation Physics and Chemistry,2014,94(1),80.
    36 Ma H L,Zhang L,Zhang Y W,et al.Acta Physico-Chimica Sinica,2015,31(10),2016(in Chinese).马慧玲,张龙,张有为,等.物理化学学报,2015,31(10),2016.
    37 Galal A,Amin K M,Atta N F,et al.Journal of Alloys and Compounds,2016,695,638.
    38 Wang W K,Wu Y H,Jiang Z W,et al.Applied Surface Science,2018,427,1144.
    39 Zhang Y,Chen L,Xu Z,et al.Materials Letters,2012,89,226.
    40 Zhang Y,Shi J,Chen C,et al.Physica E:Low-dimensional Systems and Nanostructures,2018,97,151.
    41 Dumée L F,Feng C,He L,et al.Applied Surface Science,2014,322,126.
    42 Chen L,Xu Z,Li J,et al.Materials Letters,2011,65,1229.
    43 Xu Z,Chen L,Li J,et al.Applied Physics Letters,2011,98,183112.
    44 Markovic'Z,Jovanovic'S,Milosavljevic'M,et al.Graphene Science Handbook:Fabrication Methods,Taylor&Francis Press,UK,2016.
    45 Xu Z,Wang R,Wang C,et al.e-Polymers,2011,11,634.
    46 Guo J,Li Y,Wu S,et al.Nanotechnology,2005,16(10),2385.
    47 Xu H,Wang X,Zhang Y,et al.Chemistry of Materials,2006,18(13),2929.
    48陈仕谋,吴国忠,刘耀东.2005年全国高分子学术论文报告会,北京,2005,511.
    49 Zhang B,Xie S,Wei R,et al.Science China-Chemistry,2016,59(3),303.
    50 Lee C,Baik S.Carbon,2010,48(8),2192.
    51 He Y,Li J,Luo K,et al.Industrial and Engineering Chemistry Research,2016,55(13),3775.
    52 Zeng L.Ome Information,2009,26(9),12(in Chinese).曾乐勇.光机电信息,2009,26(9),12.
    53 Ghafoor B,Mehmood M S,Shahid U,et al.Radiation Physics and Chemistry,2016,125,145.
    54 Lee K Y,Kim K Y.Polymer Degradation and Stability,2008,93(7),1290.
    55 Chen L,Xu Z,Li J,et al.Journal of Materials Chemistry,2012,22(27),13460.
    56 Xu Z,Chen L,Zhou B,et al.RSC Advances,2013,3(27),10579.
    57 Liu X,Jiang S,Huang W,et al.Kerntechnik,2014,79(3),216.材料导报(A),2019,33(2):375-385
    58 Fu X,Zhang Y,Cao P,et al.Radiation Physics and Chemistry,2016,123,79.
    59 Zhang B,Zhang Y,Peng C,et al.Nanoscale,2012,4(5),1742.
    60张伯武,张玉洁,韦荣茂,等.2011年全国高分子学术论文报告会.大连,2011,784.
    61蔡晓生,崔雨,李久强,等.中国化学会第30届学术年会,大连,2016.
    62 Chen L,Li X,Wang L,et al.Polymer Composites,2017,37(1),236.
    63 Xie L,Duan G,Wang W,et al.Industrial and Engineering Chemistry Research,2016,55(29),8123.
    64 Pitt W G,Jack D R,Zhao Y,et al.Journal of Biomaterials Science Polymer Edition,2012,23(1-4),527.
    65 Liu J,Chen C,He C,et al.ACS Nano,2012,6(9),8194.
    66 Lee S,Lee H,Sim J H,et al.Macromolecular Research,2014,22(2),165.
    67 Zhang Z,Liu Y,Huang Y,et al.Journal of Composites Technology and Research,2002,62(3),331.
    68 Evora M C,Araujo J R,Ferreira E H M,et al.Applied Surface Science,2015,335,78.
    69 He F,Li R M.Hi-Tech Fiber&Application,2006,31(6),5(in Chinese).贺福,李润民.高科技纤维与应用,2006,31(6),5.
    70 He F,Li R M.Hi-Tech Fiber&Application,2007,32(1),8(in Chinese).贺福,李润民.高科技纤维与应用,2007,32(1),8.
    71 Zhao M Q,Zhang Q,Huang J Q,et al.Carbon,2013,54(2),403.
    72 Chen M,Tao T,Zhang L,et al.Chemical Communications,2013,49(16),1612.
    73 Ma H L,Zhang L,Zhang Y,et al.Radiation Physics and Chemistry,2016,118,21.
    74 Shi Y,Xiong D,Li J,et al.Journal of Physical Chemistry C,2016,120(34),19442.
    75 Hwang Y,Kim M,Kim J.Journal of Materials Science,2013,48(20),7011.
    76 Chen C Y,Fu M J,Tsai C Y,et al.Journal of Magnetism and Magnetic Materials,2014,367,47.
    77 Huang Z,Li J,Chen Q,et al.Materials Chemistry and Physics,2009,114(1),33.
    78 Yang C,Song W,Zhang H,et al.Nuclear Techniquse,2011,34(7),517(in Chinese).杨明成,宋卫东,张宏娜,等.核技术,2011,34(7),517.
    79 Zhao J,Deng B,Lv M,et al.Advanced Healthcare Materials,2013,2(9),1259.
    80 Silambarasan D,Iyakutti K,Asokan K,et al.Solid State Physics,2015,1665(1),339.
    81 Xu Z,Chen L,Liu L,et al.Carbon,2011,49(1),350.
    82 Silambarasan D,Surya V J,Iyakutti K,et al.Applied Surface Science,2017,418,49.
    83 Zhang Q,Zhang Y,Gao Z,et al.Journal of Materials Chemistry C,2013,1(2),321.
    84 Cai X,Zhang Q,Wang S,et al.Journal of Materials Science,2014,49(16),5667.
    85 Cao P,Hu Y,Zhang Y,et al.Acta Physico-Chimica Sinica,2017,33(12),2542(in Chinese).曹朋飞,胡杨,张有为,等.物理化学学报,2017,33(12),2542.
    86 Zhu C H,Lu Y,Peng J,et al.Advanced Functional Materials,2012,22(19),4017.
    87 Basfar A A,Lotfy S.Radiation Physics and Chemistry,2015,106,376.
    88 Shahriary L,Ghourchian H,Athawale A A.Journal of Nanotechnology,2014,2014(26),1.(责任编辑谢欢)