基于弹流润滑的无级变速器滑移控制安全区域分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of CVT Safe Operation Areas under Slip Control Mode Based on Elasto-hydrodynamic Lubrication Theory
  • 作者:刘金刚 ; 王宁 ; 范坚 ; 赵又红
  • 英文作者:LIU Jingang;WANG Ning;FAN Jian;ZHAO Youhong;School of Mechanical Engineering,Xiangtan University;
  • 关键词:无级变速器 ; 滑移控制 ; 弹流润滑 ; 安全工作区域
  • 英文关键词:continuously variable transmission(CVT);;slip control;;elasto-hydrodynamic lubrication;;safe operation area
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:湘潭大学机械工程学院;
  • 出版日期:2019-07-08 11:28
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.517
  • 基金:国家自然科学基金资助项目(51475402);; 湖南省自然科学基金湘潭联合基金资助项目(2018JJ4056);; 长株潭国家自主创新示范区专项资金资助项目(2017XK2108);; 湖南省杰出青年基金资助项目(2019JJ20015)
  • 语种:中文;
  • 页:ZGJX201913007
  • 页数:6
  • CN:13
  • ISSN:42-1294/TH
  • 分类号:44-49
摘要
针对无级变速器滑移模式下传动失效概率增大的问题,基于弹流润滑理论分析了不同传递转矩和相对滑动速度情况下,从动轮摩擦副油膜压力、厚度及其剪切应力变化情况,建立了安全裕度模型,基于油膜极限剪切应力与最大剪切应力计算了摩擦副的安全裕度,并确定了滑移控制的安全工作区域,为滑移控制策略的制定与优化提供了依据。研究结果表明:随着从动带轮传递转矩、相对滑动速度的增大,摩擦副的安全裕度逐渐减小;当传递转矩小于130 N·m时,在所有相对滑移速度范围内均可保证摩擦副油膜处于安全状态;当传递转矩大于130 N·m时,随着相对速度的增大,摩擦副油膜失效概率增大。
        For the problems of increasing the failure probability of transmission under CVT slip mode, the oil film pressure, thickness and shear stress of a secondary pulley friction pair were analyzed with elasto-hydrodynamic lubrication under different transfer torques and relative slipping speeds. The safety margin model was established, the safety margin of the friction pairs under the slip state of the metal strip was calculated based on the ultimate shear stress and maximum shear stress of the oil films. The safety margin model might be used to determine the safe working areas of the CVT slip control, which provided a basis for the formulation and optimization of slip control strategy. The results show that with the secondary pulley transfer torques, relative slipping speed increases, the friction pair of the safety margin decreased gradually; when the transmission torque is less than 130 N·m, the oil film of the friction pair is guaranteed to be in a safe state in all relative slip speed ranges; when the transmission torque is greater than 130 N·m, the failure probability of oil film increases with the increase of relative velocity.
引文
[1] BONSEN B,KLAASSEN T W G L,PULLES R J,et al.Performance Optimisation of the Push-belt CVT by Variator Slip Control[J].International Journal of Vehicle Design,2005,39(3):232-256.
    [2] van der LAAN M,van DROGEN M,BRANDSMA A .Improving Push Belt CVT Efficiency by Clamping Force Control Strategies Based on Variator Slip Measurement[J].SAE Paper,2004-40-0039.
    [3] JI J,KPAR J,KWON O,et al.Macroslip Detection and Clamping Force Control for a Metal V-belt Continuously Variable Transmission[J].Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering,2014,228(8):943-954.
    [4] 张伯俊,王谦,郝允志.汽车无级变速器夹紧力动态安全系数控制研究[J].机械传动,2015,39 (3):45-49.ZHANG Bojun,WANG Qian,HAO Yunzhi.Study on Dynamic Sactor Control of Clamping Force of Automotive Continuously variable Transmission[J].Journal of Mechanical Transmission,2015,39 (3):45-49.
    [5] BONSEN B.Efficiency Optimization of the Push-belt CVT by Variator Slip Control[D].Eindhoven:Technische Universiteit Eindhoven,2006.
    [6] PENNINGS B M.DROGEN V,BRANDSMA A,et al.van Doorne's CVT Fluid Test:a Test Method on Belt-pulley Level to Select Fluids for Push Belt CVT Applications[J].SAE Paper,2003-01-3253.
    [7] OHNO N,YAMADA S.Effect of High Pressure Rheology of Lubricants upon Entrapped Oil Film Behaviour at Halting Elastohydrodynamic Lubrication[J].Journal of Engineering Tribology,2007,221(3):279-285.
    [8] PAULSON N R,SADEGHI F,HABCHI W.A Coupled Finite Element EHL and Continuum Damage Mechanics Model for Rolling Contact Fatigue[J].Tribology International,2017,107:173-183.
    [9] LUO J B,LIU S.The Investigation of Contact Ratio in Mixed Lubrication[J].Tribology International,2006,39(5):409-416.
    [10] BEWSHER S,TUMBULL R,MOHAMMADPOUR M,et al.Effect of Cylinder De-activation on Thetribological Performance of Compressionring Conjunction[J].Journal of Engineering Tribology,2017,231(8):997-1006.
    [11] HABCHI W,BAIR S,VERGNE P.On Friction Regimes in Quantitative Elastohydrodynamics[J].Tribology International,2013,58(58):107-117.
    [12] 杨沛然,温诗铸.弹流润滑问题的直接解法[J].青岛理工大学学报,1990,11(3):29-38.YANG Peiran,WEN Shizhu.Direct Solution to the Problem of Elastohydrodynamic Lubrication[J].Journal of Qingdao Technological University,1990,11(3):29-38.
    [13] ZHANG Yongbin.Contact-fluid interfacial Shear Strength and Its Critical Importance in Elastohydrodynamic Lubrication[J].Industrial Lubrication & Tribology,2013,58(1):4-14.
    [14] 李刚,张勇斌,蒋学东.单面界面滑移对阶梯轴承润滑性能的影响研究[J].机械设计与制造,2013(10):167-170.LI Gang,ZHANG Yongbin,JIANG Xuedong.Research of the Effect of Single Interface Slip on the Properties of Ladder Bearing Lubrication[J].Machinery Design and Manufacture,2013(10):167-170.
    [15] JONAS S,BO O J.A Lubricant Model Considering Wall-slip in EHL Line Contacts[J].Journal of Tribology,2003,125(3):523-532.
    [16] 尹振鑫.高压高剪切流体边界滑移机理与剪切特性研究[D].北京:北京理工大学,2015.YIN Zhenxin.Study on the Mechanism and Shear Characteristics of Boundary Slip under High Pressure and Shear Rate Condition[D].Beijing:Beijing Institute of Technology,2015.
    [17] RICHARDSON D A,BEXTON R,SHAW F E,et al.EHL Film Thickness Limitation Theoryunder a Limiting Shear Stress[J].Tribology Transactions,2002,45(4):531-539.
    [18] FENG J J,TAN Y Q.Analysis of the Slipping Contact between a Cylinder and a Plane on the Base of Hertz Theory[J].Tribology,2009,29(4):346-350.