U-5.7Nb合金动载下绝热剪切带的形成及其演化机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation and Evolution Mechanism of Adiabatic Shear Bands in U-5.7Nb Alloy Subjected to Dynamic Loading
  • 作者:郭亚昆 ; 帅茂兵 ; 邹东利 ; 赵雅文 ; 肖大武
  • 英文作者:Guo Yakun;Shuai Maobing;Zou Dongli;Zhao Yawen;Xiao Dawu;Science and Technology on Surface Physics and Chemistry Laboratory;Institute of Materials, China Academy of Engineering Physics;
  • 关键词:U-5.7Nb合金 ; 应变 ; 绝热剪切带
  • 英文关键词:U-5.7Nb alloy;;strain;;adiabatic shear bands
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:表面物理与化学重点实验室;中国工程物理研究院材料研究所;
  • 出版日期:2018-05-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.382
  • 基金:中国工程物理研究院科学发展基金(2014B0301046,2015B0301066)
  • 语种:中文;
  • 页:COSE201805020
  • 页数:7
  • CN:05
  • ISSN:61-1154/TG
  • 分类号:139-145
摘要
研究了U-5.7Nb合金在应变速率为8000s~(-1)下绝热剪切带的形成及其演化机制。通过控制应变速率,采用应变限位环的方法实现了U-5.7Nb合金在不同应变下的动态变形。结果表明:随着应变的增加,U-5.7Nb合金动载下会形成两种类型的绝热剪切带:形变带和转变带。形变带形成所需的临界应变值接近于0.33,而转变带形成所需的临界应变值接近于0.39。显微组织观察表明形变带内部由严重拉长的畸变组织组成,而转变带内部主要由细小等轴的晶粒组成。基于不同应变下绝热剪切带的表征,预测了U-5.7Nb合金动载下塑性变形及其断裂过程。
        The formation and evolution of adiabatic shear bands in U-5.7Nb alloy deformed at a strain rate of 8000s~(-1) were investigated.Dynamic deformation at different strains of U-5.7Nb alloy was obtained by the strain stopping rings and the controlled strain rate.The results show that with the strain increasing,two types of adiabatic shear bands including deformed band and transformed band are distinguished in U-5.7Nb alloy under the dynamic deformation.The critical strain value for the deformed band formation approaches to 0.33,and that for the transformed band formation is close to 0.39.Microscopic observation shows that the deformed bands are composed of severely elongated distortional structure while the transformed bands are mainly composed of ultrafine equiaxed grains.Based on characterization of adiabatic shear bands at different strains,the plastic deformation and fracture process of U-5.7Nb alloy subjected to dynamic loading were speculated.
引文
[1]Batra R C,Stevens J B.Computer Methods in Applied Mechanics Engineering[J],1998,151:325
    [2]Cady C M,Gray G T,Chen S R et al.PYMAT International Conferences[C].Belgium:Los Alamos National Lab,2009:1045
    [3]Wang Xiaoying(王小英),Lang Dingmu(郎定木),Ren Dapeng(任大鹏)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2005,34(10):1546
    [4]Wang Xiaoying(王小英),He Li-eng(何立峰),Bai Bin(白彬)et al.Journal of Engineering Materials(工程材料)[J],2009,8:1
    [5]Shi Jie(石洁),Wang Xiaoying(王小英),Zhao Yawen(赵雅文)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2014,43(11):2836
    [6]Huang hai(黄海),He Lifeng(何立峰),Xiao Dawu(肖大武)et al.Journal of Engineering Materials(工程材料)[J],2013,12:1
    [7]Xu Y B,Zhang J H,Bai Y L et al.Metallurgical Materials and Transaction A[J],2008,39:811
    [8]Liao S C,Duffy J.Journal of the Mechanics and Physics Solids[J],1998,46:2201
    [9]Cho K,Chi Y C,Duffy J.Metallurgical Transaction A[J],1990,21:1161
    [10]Zhen L,Zou D L,Xu C Y et al.Materials Science and Engineering A[J],2010,527:5728
    [11]Lee W S,Liu C Y,Sun T N.International Journal of Impact Engineering[J],2005,32:210
    [12]Perez-Prado M T,Hines J A,Vecchio K S et al.Acta Materialia[J],2001,49:2905
    [13]Zou D L,Zhen L,Xu C Y et al.Materials Characterization[J],2011,62:496
    [14]Meyers M A,Xu Y B,Xue Q.Acta Materialia[J],2003,51:1307
    [15]Meyers M A,Cao B Y,Nesterenko V F et al.Metallurgical Materials and Transaction A[J],2004,35:2575
    [16]Clarke A J,Field R D,Mccabe R J et al.Acta Materialia[J],2008,56:2638
    [17]Chen M W,Mccauley J W,Hemker K J.Science[J],2003,299:1563
    [18]Zou D L,Luan B F,Liu Q et al.Materials Science and Engineering A[J],2012,558:517