电动单旋翼植保无人机性能试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance test of electric powered single-rotor UAV for plant protection
  • 作者:金永奎 ; 薛新宇 ; 秦维彩 ; 孙竹
  • 英文作者:Jin Yongkui;Xue Xinyu;Qin Weicai;Sun Zhu;Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs;
  • 关键词:植保无人机 ; 性能测试 ; 电动单旋翼 ; 飞行精度 ; 雾滴覆盖率 ; 农药利用率
  • 英文关键词:plant protection UAV;;performance test;;electric single-rotor;;flight accuracy;;droplet coverage;;pesticide utilization rate
  • 中文刊名:GLJH
  • 英文刊名:Journal of Chinese Agricultural Mechanization
  • 机构:农业农村部南京农业机械化研究所;
  • 出版日期:2019-03-15
  • 出版单位:中国农机化学报
  • 年:2019
  • 期:v.40;No.301
  • 基金:江苏省农机三新工程项目(NJ2017—10);; 国家重点研发计划项目(2016YFD0200700);国家重点研发计划项目(2017YFD0701000)
  • 语种:中文;
  • 页:GLJH201903011
  • 页数:6
  • CN:03
  • ISSN:32-1837/S
  • 分类号:62-67
摘要
植保无人机近年来在我国得到迅速发展,在病虫害防治中发挥越来越重要的作用,而其性能好坏决定喷洒质量和防治效果。本文针对新开发的CE-20型电动单旋翼植保无人机的性能特点,结合新颁布的标准和相关测试设备,设计测试内容和方法,分别对飞行精度、重喷漏喷率、雾滴覆盖率和农药有效利用率等参数进行测试。测试结果表明,CE-20型电动单旋翼植保无人机水平偏航距最大偏差为0.365 m、高度偏航距最大偏差为0.314 m、飞行速度最大偏差为0.254 m/s、重喷率为7.3%、漏喷率为3.1%、雾滴覆盖率上部和下部的平均值分别为1.17%和0.99%、农药有效利用率为42.3%,具有较好的性能,能满足水稻、小麦等作物大面积的病虫害防治。本文的数据和结果可为机具的性能完善提高提供依据,也可为田间作业提供参考和指导。
        In recent years, plant protection UAV has developed rapidly in China, playing an increasingly important role in the disease and pest control, and its performance determines the spraying quality and control effect. Aiming at the performance characteristics of the newly developed CE-20 electric single-rotor plant protection UAV, combined with the newly issued standards and related test equipment, the test contents and methods were designed, and the flight accuracy, re-spray rate, droplet coverage rate and pesticide effective utilization rate were tested respectively. The test results show that the maximum deviation of horizontal yaw distance is 0.365 m, the maximum deviation of altitude yaw distance is 0.314 m, the maximum deviation of flight speed is 0.254 m/s, the re-spray rate is 7.3%, the leakage rate is 3.1%, the average of upper and lower droplet coverage is 1.17% and 0.99% and the effective utilization rate of pesticides is 42.3%. It has good performance and can satisfy the large-scale pest control of rice, wheat and other crops. The data and results in this paper can provide a basis for improving the performance of the machine, and also provide reference and guidance for field operations.
引文
[1] 兰玉彬, 王国宾. 中国植保无人机的行业发展概况和发展前景[J]. 农业工程技术, 2018, 38(9): 17-27.
    [2] 周志艳, 明锐, 臧禹, 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报. 2017, 33(20):1-13.Zhou Zhiyan, Ming Rui, Zang Yu, et al. Development status and countermeasures of agricultural aviation in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 1-13.
    [3] 冯焕萍. 农用植保无人机作业市场分析[J]. 中国农机化学报, 2018, 39(8): 54-57.Feng Huanping.Analysis of UAV agricultural plant protection operation market [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(8): 54-57.
    [4] 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201.Xue Xinyu, Lan Yubin. Agricultural Aviation Applications in USA [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 194-201.
    [5] 何勇, 张艳超. 农用无人机现状与发展趋势[J]. 现代农机, 2014(1): 1-5.
    [6] Zhang Songchao, Xue Xinyu, Sun Zhu, et al. Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(5): 14-24.
    [7] 段立蹄, 刘洋洋, 茹煜. 植保无人机变量施药监测技术研究发展与展望[J]. 中国农机化学报, 2018, 39(6): 108-113.Duan Liti, Liu Yangyang, Ru Yu.Research development and prospect of plant protection UAV aerial application monitoring technology [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(6): 108-113.
    [8] 周立新, 薛新宇, 孙竹, 等. 无人直升机农药喷洒系统的设计及应用[J]. 江苏农业科学, 2013, 41(12): 396-398.
    [9] Qin W C, Xue X Y, Zhou Q Q, et al. Use of RhB and BSF as fluorescent tracers for determining pesticide spray distribution [J]. Analytical Methods, 2018(10): 4073-4078.
    [10] 张宋超, 薛新宇, 秦维彩, 等. N-3 型农用无人直升机航空施药飘移模拟与试验[J]. 农业工程学报, 2015, 31(3): 87-93.Zhang Songchao, Xue Xinyu, Qin Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 87-93.
    [11] 茹煜, 金兰, 周宏平, 等. 航空施药旋转液力雾化喷头性能试验[J]. 农业工程学报, 2014, 30(3): 50-55.Ru Yu, Jin Lan, Zhou Hongping, et al. Performance experiment of rotary hydraulic atomizing nozzle for aerial spraying application [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 50-55.
    [12] 王军, 邹学庆, 卢蓓蓓, 等. 基于nRF24L01植保无人机无线数据传输系统设计[J]. 中国农机化学报, 2018, 39(6): 52-55.Wang Jun, Zou Xueqing, Lu Beibei, et al. Design of control data acquisition and control system for UAV plant based on nRF24L01 [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(6): 52-55.
    [13] 叶新跃. 植保无人机在洞庭湖区推广的分析研究[J]. 中国农机化学报, 2017, 38(10): 30-32, 92.Ye Xinyue. Analysis and research on popularization of unmanned aerial vehicle for plant protection around Dongting Lake [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(10): 30-32, 92.
    [14] 周伟, 王德鑫, 王磊, 等. 某型农用植保无人直升机发动机曲轴动力学分析方法的研究[J]. 中国农机化学报, 2018, 39(2): 42-45, 55.Zhou Wei, Wang Dexin, Wang Lei, et al. Research on dynamics analysis method of crankshaft for one type agriculture unmanned helicopter engine [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 42-45, 55.