氮肥用量和脲酶抑制剂对滴灌马铃薯田氧化亚氮排放和氨挥发的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of nitrogen rate and urease inhibitor on N_2O emission and NH_3 volatilization in drip irrigated potato fields
  • 作者:万伟帆 ; 李斐 ; 红梅 ; 常菲 ; 高海燕
  • 英文作者:WAN Wei-fan;LI Fei;HONG Mei;CHANG Fei;GAO Hai-yan;College of Grasslang, Resources and Environment, Inner Mongolia Agricultural University/Key Laboratory of Soil Quality and Nutrient Resources in Inner Mongolia Autonomous Region;
  • 关键词:氨挥发 ; 氧化亚氮排放 ; 尿素 ; 脲酶抑制剂 ; 滴灌 ; 马铃薯田
  • 英文关键词:ammonia volatilization;;N_2O emission;;urea;;urease inhibitor;;drip irrigation;;potato field
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:内蒙古农业大学草原与资源环境学院/内蒙古自治区土壤质量与养分资源重点实验室;
  • 出版日期:2018-04-24 11:35
  • 出版单位:植物营养与肥料学报
  • 年:2018
  • 期:v.24;No.120
  • 基金:农业部公益性行业(农业)科研专项(201503106);; 内蒙古自治区科技创新引导奖励资金项目“乌梁素海生态过渡带面源污染控制示范推广项目”资助
  • 语种:中文;
  • 页:ZWYF201803015
  • 页数:10
  • CN:03
  • ISSN:11-3996/S
  • 分类号:129-138
摘要
【目的】氨挥发和氧化亚氮排放是氮素损失的重要途径。内蒙古阴山北麓滴灌马铃薯田种植面积大,普遍存在过量施肥的问题。研究适宜的氮肥用量,利用脲酶抑制剂来抑制氨挥发和氧化亚氮排放,对提高当地氮肥利用率和减缓环境压力具有重要意义。【方法】田间试验分两年在内蒙古武川县两个村庄进行,供试地块种植马铃薯,采用滴灌技术。2015年设置4个处理,分别为:不施氮(CK);优化施氮模式,施N 180 kg/hm~2(Opt);优化施氮减半模式,施N 90 kg/hm~2(Opt R);农民传统施肥量,施N 270 kg/hm~2(Con)。2016年试验处理根据2015年的结果进行调整,设置4个处理:不施氮(CK);优化施氮添加脲酶抑制剂模式,施N 162.6 kg/hm~2(Opt I);优化施氮模式,施N 162.6 kg/hm~2(Opt);农民传统施肥量,施N 320 kg/hm~2(Con)。分别采用静态暗箱法和通气法采集氧化亚氮和氨气,每次施肥后,两天采集一次气体样品,氧化亚氮连续取样三次,氨气持续取样直至气体含量低于仪器检测值下限。【结果】氨挥发速率在施入尿素后第1~5 d出现峰值。Con处理2015和2016年氨挥发的最大峰值分别是13.2 mg/(m~2·d)和5.3 mg/(m~2·d),氨挥发累积量分别为N 3.61和3.96kg/hm~2;Opt处理的最大峰值分别为8.69 mg/(m~2·d)和3.19 mg/(m~2·d),累积挥发量分别为N 3.11和2.72 kg/hm~2;Opt R处理氨挥发速率最大峰值为5.63 mg/(m~2·d),氨挥发累积量为2.66 kg/hm~2,Opt I处理氨挥发速率最大峰值为3.67 mg/(m~2·d),氨挥发累积量为2.50 kg/hm~2。氨挥发累积量随着氮肥用量的增加而增多,Con处理的氨挥发量显著高于其他处理;氧化亚氮排放量在施入尿素后第3 d达到峰值,Con处理2015和2016年的氧化亚氮排放峰值分别达到0.3 mg/(m~2·d)和0.2 mg/(m~2·d),氧化亚氮累积排放量分别为N 1.96和1.18 kg/hm~2,显著高于其他处理;Opt处理两年的排放最大峰值均为0.11 mg/(m~2·d),氧化亚氮累积排放量为N 0.95、0.69 kg/hm~2;Opt R的氧化亚氮排放量最大峰值为0.09 mg/(m~2·d),累积量为0.90 kg/hm~2。Opt I的氧化亚氮排放量最大峰值为0.12 mg/(m~2·d),氧化亚氮累积量为0.66 kg/hm~2。相比Opt,Opt I处理的氨挥发和氧化亚氮累积排放量分别降低了11.8%和16.7%,但未达到显著水平。氨挥发速率与土壤温度呈显著正相关,土壤温度的升高会显著增加氨挥发速率,土壤湿度的增加会抑制氨挥发速率,影响不显著。氧化亚氮的排放与土壤湿度呈显著正相关,土壤中水分增加会显著增加氧化亚氮的排放量,土壤温度与氧化亚氮排放成负相关,影响未达到显著水平。【结论】与农民传统施肥模式相比,优化施氮模式可显著降低氨挥发和氧化亚氮排放量,添加脲酶抑制剂未达到显著降低尿素氨挥发量和氧化亚氮排放的效果。土壤湿度和土壤温度在一定程度上影响着氨挥发速率和氧化亚氮的排放通量。在供试地区马铃薯田的施肥管理中,推荐可有效地降低氨挥发和氧化亚氮排放量的优化施氮模式。
        【Objectives】Nitrous oxide emission and ammonia volatilization are important ways for nitrogen loss in calcareous soil. The planting area of potato in the northern Yinshan of Inner Mongolia is increasing year by year, and the problem of excessive fertilization is still common. The effects of nitrogen management and the addition of urease inhibitor were studied in this paper, so as to find a satisfactory way of inhibiting the ammonia volatilization and nitrous oxide emission in the area.【Methods】Monitoring was carried out in the field where potato had been grown for two successive years in two villages using drip irrigation technique. In 2015, 4 different nitrogen fertilizer levels were set up respectively: No N application(CK); N 90 kg/hm~2 in reduced fertilization mode(Opt R); N 180 kg/hm~2 in optimized fertilization mode(Opt); N 270 kg/hm~2 in conventional fertilization mode(Con). The treatments were regulated in 2016 according to the results of 2015, and the four treatments were:No N application(CK); N 162.6 kg/hm~2 in optimized fertilization mode and added urease inhibitors in urea(Opt I);N 162.6 kg/hm~2 in optimized fertilization mode(Opt); N 320 kg/hm~2 in conventional fertilization mode(Con). The static camera obscura and ventilation methods were used to monitor the amounts of N_2O emission and ammonia volatilization. After each fertilization, the gas samples were collected for two days, and the N_2O was continuously sampled for three times, and the NH3 was not stop sampling until the gas content was lower than the detection limit of the instrument.【Results】The ammonia volatilization reached peak after 1–5 days of nitrogen application in potato fields. The maximum ammonia volatilization in 2015 and 2016 were 13.2 mg/(m~2·d) and5.3 mg/(m~2·d), and the accumulative volatilization were N 3.61 and 3.96 kg/hm~2 under Con mode, respectively.The maximum peaks were 8.69 and 3.19 mg/(m~2·d), and the accumulative volatilization were N 3.11 and 2.72 kg/hm~2 under the Opt mode, respectively. The maximum volatilization peak was N 5.63 mg/(m~2·d), and the cumulative amount was N 2.66 kg/hm~2 under Opt R mode. The maximum peak was N 3.67 mg/(m~2·d), and the cumulative volatilization was N 2.50 kg/hm~2 under Opt I mode. The cumulative ammonia volatilization was increased with the increase of nitrogen application rate. The amount of ammonia volatilization in Con mode was significantly higher than in the others. The content of N_2O emission reached the peak after 3 days of N application.The cumulative N_2O emission under Con mode was N 1.96 and 1.18 kg/hm~2 respectively in 2015 and 2016 with the maximum peak of 0.3 mg/(m~2·h) and 0.2 mg/(m~2·h), respectively. The loss rate of N_2O in Con mode was the highest, which was significantly higher than those in the others; N_2O cumulative emissions in the Opt mode were0.95 and 0.69 N kg/hm~2, respectively, with the maximum peak of 0.11 mg/(m~2·h). The cumulative N_2O emission was 0.90 kg/hm~2 with the maximum peak value of 0.09 mg/(m~2·h) in Opt R mode. The maximum peak value of N_2O in the Opt I was 0.12 mg/(m~2·h), and the cumulative N_2O emission was 0.66 kg/hm~2. Compared with the Opt mode, the cumulative ammonia volatilization and N_2O emissions in Opt I mode were respectively decreased by11.8% and 16.7%, although they are not significant. The ammonia volatilization rate and soil temperature showed a significant positive correlation, while soil moisture did not. Nitrous oxide emission was significantly and positively correlated to soil moisture, but the soil temperature was not.【Conclusions】The optimized nitrogen application treatment could significantly reduce the ammonia volatilization and nitrous oxide emission compared with the farmers' practice. The addition of urease inhibitor does not significantly reduce ammonia volatilization and nitrous oxide. Soil temperature increases ammonia volatilization rate and soil moisture increases nitrite oxide emission flux. Therefore, optimizing nitrogen fertilization mode should be considered firstly for the reduction of nitrogen fertilizer loss in the tested potato field.
引文
[1]中国农业年鉴编委会,2004年中国农业年鉴[M].北京:中国农业出版社,2005.Editorial Board of China Agriculture Year Book.The year book of China agriculture for 2004[M].Beijing:Chinese Agricultural Press,2005.
    [2]Rochette P,Angers D A,Chantigny M H,et al.Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands[J].Nutrient Cycling in Agroecosystems,2008,84(1):71-80.
    [3]Trenkel M E.Slow-and controlled-release and stabilized fertilizer:an option for enhancing nutrient use efficiency in agriculture[M].Paris:International Fertilizer Industry Association(IFA),2010.56.
    [4]Patino Z,Cejanavarro J A,Govaerts B,et al.The effect of different tillage and residue management practices on soil characteristics,inorganic N dynamics and emissions of N_2O,CO_2 and CH_4 in the central highlands of Mexico:a laboratory study[J].Plant and Soil,2009,314:231-241.
    [5]张继亨.氮肥与温室气体[J].大氮肥,2005,28(6):365-367.Zhang J H.Nitrogenous fertilizers and green-house gases[J].Large Scale Nitrogenous Fertilizer Industry,2005,28(6):365-367.
    [6]俞映惊,薛利红,杨林章.太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J].农业环境科学学报,2013,32(8):1682-1689.Yu Y J,Xue L H,Yang L Z.Ammonia volatilization from paddy fields under different nitrogen schemes in Taihu Lake region[J].Journal of Agro-Environment Science,2013,32(8):1682-1689.
    [7]王海云,邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报,2009,28(12):2631-2636.Wang H Y,Xing G X.Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J].Journal of Agro-Environment Science,2009,28(12):2631-2636.
    [8]宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265-269.Song Y S,Fan X H,Lin D X,et al.Ammonia volatilities from paddyfields in the Taihu Lake region and its influencing factors[J].Acta Pedologica Sinica,2004,41(2):265-269.
    [9]李艳,唐良梁,陈义,等.嘉兴地区稻田氨挥发及其影响因素的研究[J].中国土壤与肥料,2015,(5):7-12,71.Li Y,Tang L L,Chen Y,et al.Ammonia volatilization of rice cropping field and influence factors in Jiaxing region[J].Soil and Fertilizer Sciences in China,2015,(5):7-12,71.
    [10]山楠,赵同科,毕晓庆,等.不同施氮水平下小麦田氨挥发规律研究[J].农业环境科学学报,2014,33(9):1858-1865.Shan N,Zhao T K,Bi X Q,et al.Ammonia volatilization from wheat soil under different nitrogen rates[J].Journal of Agro-Environment Science,2014,33(9):1858-1865.
    [11]张翀,李雪倩,苏芳,等.施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J].农业环境科学学报,2016,35(6):1194-1201.Zhang C,Li X Q,Su F,et al.Effects of different fertilization and measurement methods on ammonia volatilization of summer maize in purple soil[J].Journal of Agro-Environment Science,2016,35(6):1194-1201.
    [12]杨淑莉,朱安宁,张佳宝,等.不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J].干旱区研究,2010,27(3):415-421.Yang S L,Zhu A N,Zhang J B,et al.Ammonia volatilization loss and its affecting factors under different amounts and ways of N application in field[J].Arid Zone Research,2010,27(3):415-421.
    [13]谢勇,荣湘民,张玉平,等.控释氮肥减量施用对春玉米土壤N20排放和氨挥发的影响[J].农业环境科学学报,2016,35(3):596-603.Xie Y,Rong X M,Zhang Y P,et al.Effects of reduced CRNF applications on N20 emissions and ammonia volatilization in spring maize soil[J].Journal of Agro-Environment Science,2016,35(3):596-603.
    [14]李俊.农业土壤排放氧化亚氮的影响因素分析[J].生态农业研究,1995,3(4):65-68.Li J.Analysis of influencing factors on N20 emission from agricultural soils[J].Ecological Agriculture Research,1995,3(4):65-68.
    [15]Jiao Y,Huang Y.Influence of soil properties on N20 emissions from farmland[J].Climate and Environmental Research,2003,8(4):457-466.
    [16]董玉红,欧阳竹,李运生,等.不同施肥方式对农田土壤CO_2和N_2O排放的影响[J].中国土壤与肥料,2007,(4):34-39.Dong Y H,Ou Y Z,Li Y S,et al.Influence of different fertilization on CO_2 and N_2O fluxes from agricultural soil[J].Soil and Fertilizer Sciences in China,2007,(4):34-39.
    [17]Janat M.Efficiency of nitrogen fertilizer for potato under fertigation utilizing a nitrogen tracer technique[J].Communications in Soil Science&Plant Analysis,2007,38(17):2401-2422.
    [18]Michael W W,Hopmans J W,Stockert C M,et al.Effects of drip fertigation frequency and N-source on soil N2O production in almonds[J].Agriculture,Ecosystems and Environment,2017,238:67-77.
    [19]张文学,孙刚,何萍,等.脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J].植物营养与肥料学报,2013,19(6):1411-1419.Zhang W X,Sun G,He P,et al.Effects of urease inhibitors andnitrification inhibitors on ammonia volatilization from paddy fields[J].Journal of Plant Nutrition and Fertilizer,2013,19(6):1411-1419.
    [20]王玉雯,郭九信,孔亚丽,等.氮肥优化管理协同实现水稻高产和氮肥高效[J].植物营养与肥料学报,2016,22(5):1157-1166.Wang Y W,Guo J X,Kong Y L,et al.Nitrogen optimize management achieves high grain yield and enhances nitrogen use efficiency of rice[J].Journal of Plant Nutrition and Fertilizer,2016,22(5):1157-1166.
    [21]廖先苓.氮肥气态损失的研究方法[J].土壤学进展,1983,1 1(5):49-55.Liao X L.The methods of research of gaseous loss of nitrogen fertilizer[J].Progress in Soil Science,1983,11(5):49-55.
    [22]姚志生.太湖地区冬小麦田与蔬菜地的N_2O和NO排放[D].重庆:西南农业大学硕士论文,2005.Yao Z S.N2O and NO emissions from winter wheat fields and vegetable fields in Taihu Lake region[D].Chongqing:MS Thesis of Southwest Agriculture University,2005.
    [23]纪玉刚,孙静文,周卫,等.东北黑土玉米单作体系氨挥发特征研究[J].植物营养与肥料学报,2009,15(5):1044-1050.Ji Y G,Sun W Y,Zhou,et al.In situ study of ammonia volatilization from black soil with maize monoculture system[J].Plant Nutrition and Fertilizer Science,2009,15(5):1044-1050.
    [24]Xing G X.N20 emission from cropland in China[J].Nutrient Cycling in Agro-Ecosystems,1998,52(2-3):249-254.
    [25]Mosier A,Schimel D,Valentine D,et al.Methane and nitrous oxide fluxes in native,fertilized and cultivated grass lands[J].Nature,1991,350(6316):330-332.
    [26]徐华,鹤田治雄.土壤水分状况和质地对稻田N_2O排放的影响[J].土壤学报,2000,37(4):499-505.Xu H,He T Z X.Effect of soil water regime and soil texture on N20emission from rice paddy field[J].Acta Pedologica Sinica,2000,37(4):499-505.
    [27]Freney J R,Keerthisinghe D G,Phongpan S,et al.Effect of urease,nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand[J].Fertilizer Research,1995,40(3):225-233.
    [28]Soares J R,Cantarella H,Campos Menegale M L.Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors[J].Soil Biology&Biochemistry,2012,52(8):82-89.
    [29]Byrnes B H,Frenec J R.Recent developments on the use of urease inhibitors in the tropics[J].Fertilizer Research,1995,42(1-3):251-259.
    [30]McCartv G W,Bremner J M,Chai H S L.Effect of N-(n-butyl)thiophosphoric triamide on hydrolysis of urea by plant,microbial and soil urease[J].Soil Biology&Biochemistry,1989,8(2):515-519.
    [31]周礼恺,徐星凯,陈利军,等.氢醌和双氰胺对种稻土壤N_2O和CH_4排放的影响[J].应用生态学报,1999,10(2):189-192.Zhou L K,Xu X K,Chen L J,et al.Effects of hydroquinone and dicyandiamide on N_2O and CH_4 emissions from rice soils[J].Chinese Journal of Applied Ecology,1999,10(2):189-192.
    [32]张俊华.尿素用量及抑制剂施用对植蕉土壤N_2O、NO排放和香蕉碳氮分配的影响[D].海口:海南大学硕士学位论文,2012.Zhang J H.Effects of urea application and inhibitor application on N20,NO,and C and N distribution in banana soil[D].Haikou:MS Thesis of Hainan University,2012.
    [33]侯会静,陈慧,杨士红,等.水稻控制灌溉对稻麦轮作农田N_2O排放的调控效应[J].农业工程学报,2015,31(12):125-131.Hou H J,Chen H,Yang S H,et al.Effects of controlled irrigation of paddy fields on N20 emissions from rice-winter wheat rotation systems[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(12):125-131.
    [34]田玉华,贺发云,尹斌,朱兆良.太湖地区氮磷肥施用对稻田氨挥发的影响[J].土壤学报,2007,44(5):893-900.Tian Y H,He F Y,Yin B,Zhu Z L.Ammonia volatilization from paddy fields in the Taihu Lake region as affected by N and P combination in fertilization[J].Acta Pedologica Sinica,2007,44(5):893-900.
    [35]Xu J,Heeraman D A,Wang Y.Fertilizer and temperature effects on urea hydrolysis in undisturbed soil[J].Biology&Fertility of Soils,1993,16(1):63-65.
    [36]Mathieu O,Renault C,Leveque J,et al.Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers[J].Environmental Pollation,2006,144(3):933-940.
    [37]封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35-40.Feng K,Yin S X.Factors influencing the formation and emissions of nitrous oxide soil[J].Progress in Soil Science,1995,23(6):35-40.
    [38]王良,徐旭,叶桂香,陈国庆.夏玉米农田N20排放影响因素的模拟分析[J].植物营养与肥料学报,2016,22(2):346-352.Wang L,Xu X,Ye G X,Chen G Q.Simulation of the factors influencing N20 emission in summer corn farmland[J].Journal of Plant Nutrition and Fertilizer,2016,22(2):346-352.
    [39]徐新超,伏广农.农田氧化亚氮排放的主要影响因素及其作用机制[J].广东农业科学,2014,11(6):171-176.Xu X C,Fu G N.Main influence factors and mechanisms of N20emissions in agricultural soils[J].Guangdong Agricultural Sciences,2014,11(6):171-176.