脲酶抑制剂不同用量对土壤氮素供应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of urease inhibitor addition rate on nitrogen transformation in paddy soil
  • 作者:张文学 ; 王萍 ; 孙刚 ; 王少先 ; 刘增兵 ; 罗晓燕 ; 李祖章 ; 刘光荣
  • 英文作者:ZHANG Wen-xue;WANG Ping;SUN Gang;WANG Shao-xian;LIU Zeng-bing;LUO Xian-yan;LI Zu-zhang;LIU Guang-rong;Institute of Soil and Fertilizer & Resource and Environment,Jiangxi Academy of Agricultural Sciences/Double Cropping Rice Nutrition and Agricultural Environment Observation Experimental Station of Ministry of Agriculturet/National Engineering and Technology Research Center for Red Soil Improvement;Jiangxi Institute of Science and Technology Information;
  • 关键词:稻田 ; 脲酶抑制剂 ; NBPT ; 脲酶活性
  • 英文关键词:paddy field;;urease inhibitor;;NBPT;;urease activity
  • 中文刊名:TRFL
  • 英文刊名:Soil and Fertilizer Sciences in China
  • 机构:江西省农业科学院土壤肥料与资源环境研究所/农业部双季稻营养与农业环境观测实验站/国家红壤改良工程技术研究中心;江西省科学技术信息研究所;
  • 出版日期:2018-12-10
  • 出版单位:中国土壤与肥料
  • 年:2018
  • 期:No.278
  • 基金:国家重点研发计划(2017YFD0301601,2016YFD0200402);; 国家自然科学基金项目(31560585);; 江西省农业科学院创新基金博士启动项目(2014ZCBS009)
  • 语种:中文;
  • 页:TRFL201806006
  • 页数:8
  • CN:06
  • ISSN:11-5498/S
  • 分类号:44-50+58
摘要
为研究在红壤双季稻田脲酶抑制剂适宜的添加比例,采用田间小区试验研究不同水平的脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)对双季稻田土壤氮素转化的影响。本文设置NBPT的施用量为尿素的0. 5%、0. 75%、1. 0%、1. 25%、1. 5%5个水平。结果表明:与农民习惯施氮(单施尿素N 135 kg/hm~2)处理相比,NBPT与尿素的比例<1. 0%时,对早、晚稻的产量与氮素回收率均无显著影响,当NBPT添加比例为1. 0%、1. 25%、1. 5%时,早、晚稻的产量以及氮素回收率均显著提高,且添加量在1. 0%与1. 5%的两个处理之间无显著差异;与单施尿素相比,添加NBPT大于1. 0%时,土壤脲酶活性和铵态氮含量在分蘖期显著降低,铵态氮含量在孕穗期显著升高,而硝酸还原酶活性、硝态氮含量及微生物量碳、氮含量始终无明显差异,孕穗期的脲酶活性也无显著差异;通过逐步回归分析发现,水稻分蘖期与孕穗期土壤中铵态氮含量对水稻产量影响显著,而且孕穗期的影响大于分蘖期,其余指标则对产量无明显影响,由此可知,添加NBPT可保持孕穗期较高的土壤铵态氮含量可能是其增产与提高氮肥利用率的主要原因,NBPT在稻田的适宜添加量为尿素用量的1. 0%以上。
        To determine the optimum rate of urease inhibitor( UI),a field experiment was conducted to investigate the effects of UI on nitrogen transformation in paddy fields. Addition of urease inhibitor N-( n-butyl) thiophosphoric triamide [NBPT]was designed at five rates of 0. 5%,0. 75%,1. 0%,1. 25% and 1. 5% of urea,respectively. The results showed that urea added with 1. 0%,1. 25% and 1. 5% NBPT notably increased grain yields and N efficiency,and there was no significant difference between the 1. 0% and 1. 5% treatments,while addition of 0. 5% and 0. 75% NBPT had no significance effects on them. When the rate of NBPT in urea was more than 1. 0%,the urease activity and the content of NH+4-N in soil were obviously reduced in tillering stage,while the content of NH+4-N in soil was increased in booting stage,however there was no obvious effect on nitrate reductase activity( NRA),soil NO-3-N content,MBC and MBN in both stages. Then,there was no significant difference in urease activity between with and without NBPT at booting stage. The stepwise regression analysis revealed that the grain yield of rice was significantly associated with NH+4-N content in soil at the tillering and booting stages,especially,the latter. However,other properties in soil had no obvious effects on the grain yield. NBPT slowed down the hydrolytic action of urea and dramatically improved soil NH+4-N content in the booting stage,which appeared to be the dominate factor of increasing yields and N efficiency. The optimum rate of NBPT in urea should be above 1. 0% in paddy fields.
引文
[1] Trenkel M E. Slow-and controlled-release and stabilized fertilizers[M]//An option for enhancing nutrient efficiency in agriculture. Paris,France:International Fertilizer Industry Association 2nd edition,2010.
    [2]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [3] Rawluk C D L,Grant C A,Racz G J. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT[J]. Canadian Journal of Soil Science, 2001, 81(2):239-246.
    [4] Silva G B,Sequeira C H,Sermarini R A,et al. Urease inhibitor NBPT on ammonia volatilization and crop productivity:a meta-analysis[J]. Agronomy Journal,2017,109(1):1-13.
    [5] Chien S H,Prochnow L I,Cantarella H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts[J]. Advances in Agronomy,2009,102:267-322.
    [6] Byrnes B H,Freney J R. Recent developments on the use of urease inhibitors in the tropics[C]//Springer Netherlands:Ahmad N. Nitrogen economy in tropical soils. Trinidad:Kluwer Academic Publishers,1996. 251-259.
    [7] Alberto S C,Laura S M,Lourdes G T,et al. Gaseous emissions of N2O and NO and NO-3leaching from urea applied with urease and nitrication inhibitors to a maize(Zea mays)crop[J]. Agriculture,Ecosystems and Environment,2012,149:64-73.
    [8] Xiang S,Doyle A,Holden P A,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry,2008,40(9):2281-2289.
    [9] Dawar K,Khan I,Khan S,et al. Impact of urease inhibitor(NBPT)and herbicide on wheat yield and quality[J]. Pakistan Journal of Weed Science Research,2011,17(2):187-194.
    [10] Kandeler E,Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium[J]. Biology and Fertility of Soils,1988,6(1):68-72.
    [11]鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,2000.
    [12] Abdelmagid H M,Tabatabai M A. Nitrate reductase activity of soils[J]. Soil Biology and Biochemistry,1987,19(4):421-427.
    [13] Wu J,Joergensen R G,Pommerening B,et al. Measurement of soil microbial biomass C by fumigation-extraction automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8):167-169.
    [14] Vance E D,Brggke P C,Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry,1987,19(6):703-707.
    [15] Brookes P C,Landman A,Pruden G,et al. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method tomeasure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry,1985,17(6):837-842.
    [16] Grant C A,Bailey L D. Effect of seed-placed urea fertilizer and N-(n-butyl)thiophosphoric triamide(NBPT)on emergence and grain yield of barley[J]. Canadian Journal of Plant Science,1999,91(79):491-496.
    [17] Malhi S S,Oliver E,Mayerle G,et al. Improving effectiveness of seedrow-placed urea with urease inhibitor and polymer coating for durum wheat and canola[J]. Communications in Soil Science and Plant Analysis,2003,34(11-12):1709-1727.
    [18] Chaiwanakupt P,Freney J R,Keerthisinghe D G,et al. Use of urease,algal inhibitors,and nitrification inhibitors to reduce nitrogen loss and increase the grain yield of flooded rice(Oryza sativa L.)[J]. Biology and Fertility of Soils,1996,22(1-2):89-95.
    [19] Freney J R,Keerthisinghe D G,Phongpan S,et al. Effect of urease,nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand[J]. Fertilizer Research,1995,40:225-233.
    [20] Luo Q X,Freney J R,Keerthisinshe D G,et al. Inihibition of urease activity in flooded soils by phenylphosphorodiamidate and n-(n-butyl)thiophosphoricariamide[J]. Soil Biology and Biochemistry,1994,26(8):1059-1065.
    [21]周礼恺,赵晓燕,李荣华,等.脲酶抑制剂氢醌对土壤尿素氮转化的影响[J].应用生态学报,1992,3(1):36-41.
    [22]倪秀菊,李玉中,徐春英,等.土壤脲酶抑制剂和硝化抑制剂的研究进展[J].中国农学通报,2009,25(12):145-149.
    [23]王小彬,辛景峰.尿素与脲酶抑制剂配用对春小麦植株氮吸收的影响[J].干旱地区农业研究,1998,16(3):6-9.
    [24]赵略,孙庆元,于英梅,等.脲酶抑制剂NBPT对土壤脲酶活性和脲酶产生菌的影响[J].大连轻工业学院学报,2007,26(1):24-27.