O_3/Cl~-复合大气环境中Q235B钢的腐蚀演化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Evolution Characteristics of Q235B Steel in an O_3/Cl~- Containing Atmosphere
  • 作者:陈文娟 ; 陈翌庆 ; 潘刚
  • 英文作者:CHEN Wenjuan;CHEN Yiqing;PAN Gang;Postdoctoral Research Station, School of Materials Science and Engineering , Hefei University of Technology;School of Electronic Science & Applied Physics, Hefei University of Technology;Postdoctoral Work Station, Anhui Keda Clean Energy Co., Ltd.;
  • 关键词:Q235B钢 ; O3 ; 大气腐蚀 ; 腐蚀产物
  • 英文关键词:Q235B steel;;O3;;atmospheric corrosion;;corrosion product
  • 中文刊名:FSFJ
  • 英文刊名:Corrosion Science and Protection Technology
  • 机构:合肥工业大学材料科学与工程学院博士后流动站;合肥工业大学电子科学与应用物理学院;安徽科达洁能股份有限公司博士后工作站;
  • 出版日期:2019-01-15
  • 出版单位:腐蚀科学与防护技术
  • 年:2019
  • 期:v.31
  • 基金:合肥工业大学应用科技成果培育计划一般项目(JZ2016YYPY0064);合肥工业大学宣城校区博士产学研启动专项资助(XC2015JZBZ15和XC2015JZBZ24)~~
  • 语种:中文;
  • 页:FSFJ201901002
  • 页数:11
  • CN:01
  • ISSN:21-1264/TQ
  • 分类号:10-20
摘要
采用干/湿交替的实验方法模拟大气腐蚀过程。运用X射线衍射、电化学阻抗谱以及极化曲线等手段,研究了O_3/Cl~-复合大气环境中Q235B钢的腐蚀演化特性。结果表明,O_3和Cl~-的协同作用对Q235B钢的腐蚀有明显的促进作用,其腐蚀速率随着模拟环境中Cl~-含量的增加而增大。腐蚀演化特性方面,Q235B钢在腐蚀的初期阶段腐蚀速率最大,中期阶段腐蚀速率迅速下降,而到后期阶段腐蚀速率又有所提高。相比于不含O_3的大气环境,当Cl~-浓度较低时,O_3和Cl~-对Q235B钢腐蚀产物组份的影响并不明显。而当Cl~-浓度较高时,O_3和Cl~-能明显促进β-FeOOH的生成而抑制α-FeOOH和γ-FeOOH的生成。这说明O_3/Cl~-复合大气环境能促进Q235B钢的大气腐蚀与锈层相组分变化密切相关。
        The corrosion evolution characteristic of Q235 B steel in O_3/Cl~- containing atmosphere has been investigated by means of dry/wet cyclic corrosion test, X-ray diffractometer(XRD), electrochemical impedance spectroscopy(EIS) and polarization curve measurements. Results indicate that the synergism of O_3 and Cl~- has a significant effect on the corrosion of Q235 B steel, and the corrosion rate of the steel increases with the increase of Cl~- content in the simulated environment. The corrosion rate of low carbon steel is greatest in the early corrosion stage, then decreases rapidly in the second stage, and increases again in the third stage. Compared with the atmosphere without O_3, the simultaneous presence of O_3 and Cl~- have little effect on the composition of corrosion products on Q235 B steel when Cl~- concentration is low, however the synergistic effect of O_3 and Cl~- can significantly promote the formation of β-FeOOH,while inhibit the generation of α-FeOOH and γ-FeOOH when Cl~- concentration is high. This illustrates that the effect of O_3 and Cl~- on corrosion for Q235 B steel is due to the change of corrosion products.
引文
[1] Zhu R Z. Metal Corrosion[M]. Beijing:Metallurgical Industry Press, 1989:2(朱日彰.金属腐蚀学[M].北京:冶金工业出版社, 1989:2)
    [2] Koch G H. Historic Congressional Study:Corrosion Costs and Pre‐ventive Strategies in the United States[M]. Houston, TX:Nace In‐ternational, 2002
    [3] Ke W. China Corrosion Investigation Report[M]. Beijing:Chemi‐cal Industry Press, 2003:3(柯伟.中国腐蚀调查报告[M].北京:化学工业出版社, 2003:3)
    [4] Sun Q X. Corrosin and Protection of Materials[M]. Beijing:Metal‐lurgical Industry Press, 2001:84(孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社, 2001:84)
    [5] Leygraf C, Graedel T. Atmospheric Corrosion[M]. New York:Wiley-Interscience, 2000
    [6] Corvo F, Betancourt N, Mendoza A. The influence of airborne salin‐ity on the atmospheric corrosion of steel[J]. Corros. Sci., 1995, 37:1889
    [7] Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China[J]. Sci. Technol. Adv. Mater., 2007, 8:559
    [8] Persson D, Thierry D, Karlsson O. Corrosion and corrosion prod‐ucts of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide[J]. Corros. Sci., 2017,126:152
    [9] Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf[J]. Corros. Sci., 1991,32:417
    [10] Asami K, Kikuchi M. In-depth distribution of rusts on a plain car‐bon steel and weathering steels exposed to coastal-industrial atmo‐sphere for 17 years[J]. Corros. Sci., 2003, 45:2671
    [11] Wang S T, Yang S W, Gao K W, et al. Corrosion behavior and cor‐rosion products of a low-alloy weathering steel in Qingdao and Wanning[J]. Int. J. Miner. Metall. Mater., 2009, 16:58
    [12] Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmo‐sphere[J]. Corros. Sci., 2014, 83:155
    [13] Chen W J, Hao L, Dong J H, et al. Effect of SO2on corrosion evo‐lution of Q235B steel in simulated coastal-industrial atmosphere[J]. Acta Metall. Sin., 2014, 50:802(陈文娟,郝龙,董俊华等.模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响[J].金属学报, 2014, 50:802)
    [14] Ge S J, Wang S J, Xu Q, et al. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area[J]. Atmos. Environ.,2018, 176:47
    [15] Wei W, Lv Z F, Li Y, et al. A WRF-Chem model study of the im‐pact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China[J]. Atmos. Environ.,2018, 175:44
    [16] Carro-Calvo L, Ordó?ez C, García-Herrera R,, et al. Spatial clus‐tering and meteorological drivers of summer ozone in Europe[J].Atmos. Environ., 2017, 167:496
    [17] Pendlebury D, Gravel S, Moran M D, et al. Impact of chemical lat‐eral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions[J]. At‐mos. Environ., 2018, 174:148
    [18] Jing P, Lu Z F, Steiner A L. The ozone-climate penalty in the Mid‐western U.S.[J]. Atmos. Environ., 2017, 170:130
    [19] Oesch S, Faller M. Environmental effects on materials:The effect of the air pollutants SO2, NO2, NO and O3on the corrosion of cop‐per, zinc and aluminium. A short literature survey and results of laboratory exposures[J]. Corros. Sci., 1997, 39:1505
    [20] Wiesinger R, Martina I, Kleber C, et al. Influence of relative hu‐midity and ozone on atmospheric silver corrosion[J]. Corros. Sci.,2013, 77:69
    [21] Aastrup T, Wadsak M, Leygraf C, et al. In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur di‐oxide, ozone, and nitrogen dioxide[J]. J. Electrochem. Soc., 2000,147:2543
    [22] Chen W J, Hao L, Dong J H, et al. Effect of pH value on the corro‐sion evolution of Q235B steel in simulated coastal-industrial atmo‐spheres[J]. Acta Metall. Sin., 2015, 51:191(陈文娟,郝龙,董俊华等.模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响[J].金属学报, 2015, 51:191)
    [23] Kawasaki Y, Tomoda Y, Ohtsu M. AE monitoring of corrosion pro‐cess in cyclic wet-dry test[J]. Constr. Build. Mater., 2010, 24:2353
    [24] Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition[J]. Corros. Sci., 2014, 78:130
    [25] Pan G, Chen W J, Wang Y, et al. Corrosion evolution of Q235B steel in a simulated high-temperature and high-humidity coastal at‐mosphere[J]. Corros. Sci. Prot. Technol., 2018, 30:55(潘刚,陈文娟,王瑛等.高湿热海岸大气环境中Q235B钢的腐蚀演化规律[J].腐蚀科学与防护技术, 2018, 30:55)
    [26] Thee C, Hao L, Dong J H, et al. Numerical approach for atmo‐spheric corrosion monitoring based on eis of a weathering steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28:261
    [27] de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres us‐ing XRD and SEM/Micro-Raman techniques[J]. Corros. Sci.,2016, 110:253
    [28] Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review[J]. Corros. Sci., 2013, 77:6
    [29] Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments[J]. Corros. Sci.,2013, 67:1
    [30] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53:604
    [31] Stern M, Geary A L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem.Soc., 1957, 104:56
    [32] Mansfeld F. 1988 Whitney Award Lecture:don't be afraid of elec‐trochemical techniques-but use them with care![J]. Corrosion,1988, 44:856
    [33] Mansfeld F, Lin S, Chen Y C, et al. Minimization of high-frequen‐cy phase shifts in impedance measurements[J]. J. Electrochem.Soc., 1988, 135:906
    [34] Ruby C, A?ssa R, Géhin A, et al. Green rusts synthesis by coprecip‐itation of FeII-FeIII ions and mass-balance disgram[J]. Compt.Rend. Geosci., 2006, 338:420
    [35] Nishimura T, Katayama H, Noda K, et al. Electrochemical behav‐ior of rust formed on carbon steel in a wet/dry environment con‐taining chloride ions[J]. Corrosion, 2000, 56:935
    [36] Saha J K. Corrosion of Constructional Steels in Marine and Indus‐trial Environment:Frontier Work in Atmospheric Corrosion[M].India:Springer, 2013:7