新型超支化受阻酚类抗氧剂清除自由基能力研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Free radical scavenging ability of novel hyperbranched bridged hindered phenols
  • 作者:李翠勤 ; 孙鹏 ; 葛腾杰 ; 王华 ; 康伟伟 ; 王俊
  • 英文作者:LI Cui-qin;SUN Peng;GE Teng-jie;WANG Hua;KANG Wei-wei;WANG Jun;Key Laboratory of Oil & Gas Chemical Technology,College of Chemistry & Chemical Engineering,Northeast Petroleum University;Daqing Petrochemical Research Center,China National Petroleum Corporation;
  • 关键词:超支化受阻酚 ; 抗氧化性能 ; DPPH· ; ROO·
  • 英文关键词:hyperbranched bridged hindered phenols;;antioxidant activity;;DPPH·;;ROO·
  • 中文刊名:FZKB
  • 英文刊名:Journal of Molecular Science
  • 机构:东北石油大学化学化工学院石油与天然气化工省重点实验室;中国石油大庆化工研究中心;
  • 出版日期:2018-12-15
  • 出版单位:分子科学学报
  • 年:2018
  • 期:v.34;No.164
  • 基金:国家自然科学基金资助项目(51303020);; 黑龙江省教育厅重点项目(1251z005)
  • 语种:中文;
  • 页:FZKB201806005
  • 页数:7
  • CN:06
  • ISSN:22-1262/O4
  • 分类号:35-41
摘要
采用DPPH法和测氧法研究了新型超支化受阻酚类抗氧剂对DPPH·和ROO·的清除能力.结果表明:超支化受阻酚类抗氧剂清除自由基能力不仅与抗氧剂的结构有关,还与抗氧化条件有关.其清除自由基能力随着超支化受阻酚类抗氧剂浓度的增加而增加,随着超支化受阻酚类抗氧剂中烷基链长度的增加而降低.以正十四胺为核的超支化受阻酚类抗氧剂(R14-phenol)具有最好的清除自由基能力,清除DPPH·的速率最快,稳态时清除率为84%;抑制苯乙烯氧化的时间为2 384s,抑制速率常数为7.07×105 mol~(-1)·L~(-1)·s~(-1).
        The scavenging ability of new hyperbranched hindered phenolic antioxidants to DPPH·and ROO·was investigated by DPPH and oxygen determination methods.The results showed that the scavenging ability of hyperbranched hindered phenolic antioxidants depends not only on the structure of antioxidants,but also on the antioxidant conditions.Its ability increased with increasing of the concentration of hindered phenolic antioxidants and decreased with the increasing of alkyl-chain length of the bridged groups,respectively.Hyperbranched hindered phenol(R14-phenol)with n-tetradecylamine core has the best free radical scavenging ability with the fastest rate of 84%at the steady state,the time of styrene oxidation inhibition is 2 384 sand the rate constant is 7.07×105 mol~(-1)·L~(-1)·s~(-1).
引文
[1] KIRSCHWENG B,TTRAALJAI D,FLDES E,et al.[J].Polym Degrad Stab,2017,145:1-66.
    [2] FADDA A,SERRA M,MOLINU M G,et al.[J].J Food Compos Anal,2014,35(2):112-119.
    [3]陆园,战力英,宫青海,等.[J].塑料助剂,2016(2):43-50.
    [4]潘江庆.[J].高分子通报,2002(1):57-66.
    [5]李翠勤,孙鹏,康伟伟,等.[J].中国塑料,2016,30(8):43-49.
    [6] WANG X F,XING W Y,TANG G,et al.[J].Polym Degrad Stab,2013,98(11):2391-2398.
    [7] BERGER C,DIPL-ING A B.[J].Materialwiss Werkstofftech,2007,38(5):418-422.
    [8] COLTRO L,MACHADO M P.[J].Polímeros,2011,21(5):390-397.
    [9] PODEVA J,KOVR'OVJ,HRRLICˇKOVM,et al.[J].Polym Degrad Stab,2009,94(4):647-650.
    [10] KIM T H,LEE N G.[J].Bull Korean Chem Soc,2003,24(12):1809-1813.
    [11] KIM T H,OH D R.[J].Polym Degrad Stab,2004,84(3):499-503.
    [12] XUE B,OGATA K,TOYOTA A.[J].Polymer,2007,48(17):5005-5015.
    [13] GAO X,MENG X,WANG H,et al.[J].Polym Degrad Stab,2008,93(8):1467-1471.
    [14] KASZA G,MOSNCˇKOVK,NDOR A,et al.[J].Eur Polym J,2015,68(2):609-617.
    [15] LI C Q,WANG J,NING M,et al.[J].J Appl Polym Sci,2012,124(5):4127-4135.
    [16]李翠勤,康伟伟,孙鹏,等.[J].分子科学学报,2017,33(1):30-36.
    [17] LI Y F,LIU Z Q.[J].Eur J Pharm Sci,2011,44(1):158-163.
    [18] LI Y F,LIU Z Q.[J].Free Radicals Biol Med,2012,52(1):103-108.
    [19] CHEVION S,ROBERTS M A,CHEVION M.[J].Free Radicals Biol Med,2000,28(6):860-870.
    [20] LIU Z Q,MA L P,ZHOU B,et al.[J].Chem Phys Lipids,2000,106(1):53-63.
    [21] XIE J,SCHAICH K M.[J].J Agric Food Chem,2014,62(19):4251-4260.
    [22] FOTI M C.[J].J Agric Food Chem,2015,63(40):8765-8776.
    [23] LI C Q,SUN P,YU H Y,et al.[J].RSC Adv,2017,7(4):1869-1876.
    [24]管骁,殷婷,韩飞.[J].高等学校化学学报,2015,36(9):1707-1712.
    [25] MISHRA K,OJHA H,CHAUDHURY N K.[J].Food Chem,2012,130(4):1036-1043.
    [26] HUANG D,OU B,PRIOR R L.[J].J Agric Food Chem,2005,53(6):1841-1856.