青花菜乙烯反应传感蛋白基因BoERS的克隆与表达分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation and Expression Analysis of Broccoli Ethylene Response Sensor Gene BoERS
  • 作者:蒋明 ; 张志仙 ; 张慧娟 ; 管铭 ; 陈孝赏 ; 尹龙飞 ; 刘洁
  • 英文作者:JIANG Ming;ZHANG Zhixian;ZHANG Huijuan;GUAN Ming;CHEN Xiaoshang;YIN Longfei;LIU Jie;College of Life Science, Taizhou University;Taizhou Academy of Agricultural Research;
  • 关键词:乙烯反应传感蛋白 ; 青花菜 ; 表达分析 ; 核盘菌 ; 根肿菌
  • 英文关键词:ethylene response sensor;;broccoli;;expression analysis;;Sclerotinia sclerotiorum;;Plasmodiophora brassicae
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:台州学院生命科学学院;台州市农业科学研究院;
  • 出版日期:2018-11-19 13:07
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:台州市科技计划项目(162ny14);; 浙江省公益性技术应用研究计划项目(2016C32091);; 台州学院杰出青年项目(2017JQ001)
  • 语种:中文;
  • 页:HNXB201901004
  • 页数:8
  • CN:01
  • ISSN:11-2265/S
  • 分类号:22-29
摘要
乙烯反应传感蛋白在乙烯信号转导中起着重要作用,可作为负调控因子使下游的CTR1失活,并激活之后的一系列反应。为明确青花菜ERS基因的序列特征和表达特点,本研究以青花菜为试验材料,在克隆乙烯反应传感蛋白基因BoERS的基础上进行表达分析,以明确其在核盘菌和根肿菌侵染下的表达模式。结果表明,BoERS的基因组DNA全长为1 928 bp,含有1个长度为68 bp的内含子;编码区全长为1 860 bp,编码619个氨基酸,编码蛋白有4个跨膜结构域、1个GAF结构域和1个HisKA结构域。序列比对结果表明,BoERS与芸薹属ERS序列的差异最小,在系统发育树上处于同一分支,但与萝卜属、盐芥属和拟南芥属植物ERS序列的差异较大,在系统发育树上处于不同的分支。实时荧光定量PCR结果表明,BoERS的表达受核盘菌的诱导,36 h时表达量最大,为对照的3.53倍,但BoERS的表达不受根肿菌的诱导。本研究结果为进一步开展BoERS基因功能鉴定和应用研究奠定了理论基础。
        Ethylene response sensor protein plays an important role in ethylene signal transduction. It acts as a negative regulator which inactivates downstream component CTR1, and triggers a series of reactions succedently. To investigate sequence chavacterristics and expression features of the broccoli ERS gene, our aim is to isolate an ethylene response sensor gene in broccoli and to obtain its expression pattern induced by Sclerotinia sclerotiorum and Plasmodiophora brassicae, thus provide a foundation for its role in disease resistance response. Results indicated that the genomic DNA of BoERS was 1 928 bp in length, containing a 68 bp intron. The full coding sequence was 1 860 bp encoding 619 amino acids, and the deduced protein contained four transmembrane domains, one GAF domain and one HisKA domain. Sequence comparison revealed BoERS showed little difference form ERSs of other Brassica plants, and they were grouped into the same clade, however, larger differences were observed between BoERS and ERSs from Raphanus, Thellungiella and Arabidopsis plants, and they clustered in different clades. Quantitative real-time PCR showed that the expression of BoERS was induced by S. sclerotiorum, and the highest expression level was observed at 36 h with a 3.53 fold increase. Isolation and expression analysis of BoERS laid a basis for gene function identification as well as its application in the future.
引文
[1] Karasov T L, Horton M W, Bergelson J. Genomic variability as a driver of plant-pathogen coevolution [J]. Current Opinion in Plant Biology, 2014, 18: 24-30
    [2] Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance [J]. Plant Science, 2013, 207:79-87
    [3] Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens [J]. Frontiers in Plant Science, 2013, 4: 72
    [4] Robert-Seilaniantz A, Grant M, Jones J D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism [J]. Annual Review of Phytopathology, 2011, 49: 317-343
    [5] Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs [J]. Frontiers in Plant Science, 2013, 4: 155
    [6] Genger R K, Jurkowski G I, McDowell J M, Lu H, Jung H W, Greenberg J T, Bent A F. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis "defense, no death" mutants [J]. Molecular Plant-Microbe Interactions, 2008, 21(10):1285-1296
    [7] Lovelock D A, ?ola Ⅰ, Marschollek S, Donald C E, Rusak G, van Pée K H, Ludwig-Müller J, Cahill D M. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease [J]. Molecular Plant Pathology, 2016, 17(8):1237-1251
    [8] Acevedo-Garcia J, Gruner K, Reinst?dler A, Kemen A, Kemen E, Cao L, Takken F L W, Reitz M U, Sch?fer P, O′Connell R J, Kusch S, Kuhn H, Panstruga R. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens [J]. Scientific Reports, 2017, 7(1):9319
    [9] Nováková M, Sa?ek V, Dobrev P I, Valentová O, Burketová L. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum- reassessing the role of salicylic acid in the interaction with a necrotroph [J]. Plant Physiology and Biochemistry, 2014, 80:308-317
    [10] Nie P, Li X, Wang S, Guo J, Zhao H, Niu D. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis [J]. Frontiers in Plant Science, 2017, 8:238
    [11] 覃瀚仪, 李魏, 戴良英. 植物代谢产物在抗病反应中的功能研究进展[J]. 中国农学通报, 2015, 31(18): 256-259
    [12] 陈英, 黄敏仁, 诸葛强, 王明麻. 植物抗病信号传导途径及其相互作用 [J]. 南京林业大学学报(自然科学版), 2002, 26(3):85-90
    [13] Yang Y X, Ahammed G J, Wu C, Fan S Y, Zhou Y H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses [J]. Current Protein and Peptide Science, 2015, 16(5): 450-461
    [14] Pozo M J, Van Der Ent S, Van Loon L C, Pieterse C M. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana [J]. New Phytologist, 2008, 180(2): 511-523
    [15] 丁丽娜, 杨国兴. 植物抗病机制及信号转导的研究进展[J]. 生物技术通报, 2016, 32(10): 109-117
    [16] Deslauriers S D, Alvarez A A, Lacey R F, Binder B M, Larsen P B.Dominant gain-of-function mutations in transmembrane domain Ⅲ of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis [J].New Phytologist, 2015, 208(2):442-455
    [17] Song J, Zhu C, Zhang X, Wen X, Liu L, Peng J, Guo H, Yi C.Biochemical and structural insights into the mechanism of DNA recognition by Arabidopsis ETHYLENE INSENSITIVE3 [J]. PLoS One, 2015, 10(9):e0137439
    [18] Liu Q, Wen C K. Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes [J]. Plant Physiology, 2012, 158(3):1193-1207
    [19] Yang C, Lu X, Ma B, Chen S Y, Zhang J S. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects [J]. Molecular Plant, 2015, 8(4):495-505
    [20] Ciardi J A, Tieman D M, Jones J B, Klee H J. Reduced expression of the tomato ethylene receptor gene LeETR4 enhances the hypersensitive response to Xanthomonas campestris pv. vesicatoria [J]. Molecular Plant-Microbe Interactions, 2001, 14(4): 487-595
    [21] Klee H, Tieman D. The tomato ethylene receptor gene family: Form and function [J]. Physiologia Plantarum, 2002, 115(3): 336-341
    [22] Yasumura Y, Pierik R, Kelly S, Sakuta M, Voesenek L A, Harberd N P. An ancestral role for CONSTITUTIVE TRIPLE RESPONSE1 proteins in both ethylene and abscisic acid signaling [J]. Plant Physiology, 2015, 169(1): 283-298
    [23] Shakeel S N, Gao Z, Amir M, Chen Y F, Rai M I, Haq N U, Schaller G E. Ethylene regulates levels of ethylene receptor/CTR1 signaling complexes in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2015, 290(19): 12415-12424
    [24] 高世超, 钟凤林, 林义章, 赵瑞丽, 林俊芳, 杨碧云, 胡海非. 青花菜BrERF2基因的RACE克隆与模拟酸雨胁迫下的表达分析[J]. 核农学报, 2015, 29(11): 2093-2102
    [25] 李占省, 刘玉梅, 方智远, 杨丽梅, 庄木, 张扬勇, 吕红豪, 孙培田. 甘蓝和青花菜不同器官中莱菔硫烷含量差异研究[J]. 核农学报, 2017, 31(3): 447-454
    [26] Huang P Y, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity [J]. Journal of Experimental Botany, 2016, 67(5):1231-1241
    [27] Thongkum M, Bhunchoth A, Warin N, Warin N, Chatchawankanphanich O, van Doorn W G. Cloning and expression of ethylene response sensor 1 (Den-ERS1) gene of Dendrobium ‘Pompadour’ flower during development and senescence [J]. Thai Journal of Agricultural Science, 2009, 42(4): 227-236
    [28] Lokkamlue N, Huehne P S. Sequence analysis of ethylene response sensor gene isolated from Vanda Miss Joaquim flower [J]. Kasetsart Journal (Natural Science), 2013, 47(2): 271-284
    [29] Hsieh Y L, Lu C F, Chiang B Y, Sung H Y. Molecular characterization of ethylene response sensor 1 (BoERS1) in Bambusa oldhamii [J]. Plant Molecular Biology Reporter, 2016, 34: 387-398
    [30] 章燕如,许鑫,祝琦,周秀倩,俞可可,龚秀,蒋明. 青花菜BoBURP2基因的克隆与表达分析[J]. 福建农业学报, 2016, 31(9): 933-938
    [31] 张小丽,刘玉梅,方智远.青花菜及近缘种属种质资源抗根肿病鉴定[J]. 植物遗传资源学报,2016, 17(6):1106-1115
    [32] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction [J]. Analytical Biochemistry, 1987, 162(1):156-159
    [33] Livak K J, Schmittgen T G. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4): 402-408
    [34] Hung Y L, Jiang Ⅰ, Lee Y Z, Wen C K, Sue S C. NMR study reveals the receiver domain of Arabidopsis ETHYLENE RESPONSE1 ethylene receptor as an atypical type response regulator [J]. PLoS One, 2016, 11(8):e0160598
    [35] 刘茜, 谢芳, 邱莉萍, 文启光. 乙烯受体差异性协作与Raf-like蛋白CTR1负调控的乙烯信号转导[J]. 中国科学: 生命科学, 2013, 43(12):1054-1064
    [36] Kim J H, Lee J H, Joo S, Kim W T. Ethylene regulation of an ERS1 homolog in mung bean seedlings [J]. Physiologia Plantarum, 1999, 106(1): 90-97
    [37] Yau C P, Wang L, Yu M, Zee S Y, Yip W K. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions [J]. Journal of Experimental Botany, 2004, 55(397): 547-556
    [38] Chang J, Clay J M, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis [J]. The Plant Journal, 2014, 77(4):558-567
    [39] Binder B M, Mortimore L A, Stepanova A N, Ecker J R, Bleecker A B. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent[J]. Plant Physiology, 2004, 136, 2921-2927
    [40] 张弢,董春海. 乙烯信号转导及其在植物逆境响应中的作用[J].生物技术通报, 2016, 32(10): 11-17
    [41] Wilson R L, Kim H, Bakshi A, Binder B M. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress [J]. Plant Physiology, 2014, 165(3):1353-1366
    [42] Voesenek L, Vriezen W H, Smekens M, Huitink F, Bogemann G M, Blom C. Ethylene sensitivity and response sensor expression in petioles of Rumex species at low O2 and high CO2 concentrations [J]. Plant Physiology,1997,114(4): 1501-1509
    [43] Hershkovitz Ⅴ, Friedman H, Goldschmidt E E, Feygenberg O, Pesis E. Induction of ethylene in avocado fruit in response to chilling stress on tree [J]. Journal of Plant Physiology, 2009, 166(17): 1855-1862
    [44] El-Sharkawy Ⅰ, Jones B, Li Z G, Lelievre J M, Pech J C, Latche A. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L.) with/without cold requirement [J]. Journal of Experimental Botany, 2003, 54(387): 1615-1625
    [45] Chen J, Pang W, Chen B, Zhang C, Piao Z. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection [J]. Frontiers in Plant Science, 2016, 6: 1183
    [46] Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus [J]. Scientific Reports, 2016, 6: 19007