基于速变LOS的无人船反步自适应路径跟踪控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tracking control of backstepping adaptive path of unmanned surface vessels based on surge-varying LOS
  • 作者:余亚磊 ; 苏荣彬 ; 冯旭 ; 郭晨
  • 英文作者:Yu Yalei;Su Rongbin;Feng Xu;Guo Chen;Navigation College,Dalian Maritime University;Marine Electrical Engineering College,Dalian Maritime University;
  • 关键词:无人船 ; 路径跟踪 ; 视线导航法 ; 输入饱和 ; 自适应控制
  • 英文关键词:Unmanned Surface Vessels(USV);;path tracking;;Line-of-Sight(LOS);;input saturations;;adaptive control
  • 中文刊名:JCZG
  • 英文刊名:Chinese Journal of Ship Research
  • 机构:大连海事大学航海学院;大连海事大学船舶电气工程学院;
  • 出版日期:2019-05-17 10:50
  • 出版单位:中国舰船研究
  • 年:2019
  • 期:v.14;No.80
  • 基金:国家自然科学基金资助项目(51879027,51579024,6137114,51809028);; 中央高校基础研究基金资助项目(大连海事大学3132016311,3132018154)
  • 语种:中文;
  • 页:JCZG201903022
  • 页数:9
  • CN:03
  • ISSN:42-1755/TJ
  • 分类号:165-173
摘要
[目的]为了解决无人船由系统建模误差和参数摄动引起的混合不确定项、模型含非零非对角项和控制器输入饱和情况下的路径跟踪问题,[方法]提出基于速变视线导航法(LOS)的反步自适应无人船路径跟踪控制方法。首先引入坐标变换法,把系统模型转变为斜对角形式。把控制系统分为制导子系统和控制子系统,在制导子系统设计速变LOS算法,使纵向速度制导律与横向跟踪误差呈正相关,确保无人船能有效地朝着并保持在期望的路径上;在控制子系统设计反步自适应算法以补偿系统混合不确定项,同时引入辅助系统处理系统控制输入饱和问题。[结果]运用李雅普诺夫稳定性理论证明制导—控制闭环系统一致最终有界稳定。[结论]仿真结果验证了所提出方法的有效性和鲁棒性,对无人船反步自适应路径跟踪控制有一定的参考价值。
        [Objectives]To solve lumped uncertainties of Unmanned Surface Vessels(USV) caused by system modeling errors and parameter perturbations, and path tracking problem of the model including non-zero non-diagonal terms and controller input saturation,[Methods]a tracking control method of backstepping adaptive path of USV based on surge-varying Line-of-Sight(LOS)is proposed. First of all,a coordinate transformation is introduced to transform system model into skew-symmetric form. The controlled system is divided into two subsystems, guidance subsystem and control subsystem,respectively. In the guidance subsystem,the surge-varying LOS algorithm is developed to make guidance law of longitudinal speed positively correlated to transverse tracking error and ensure USV can effectively go towards and keep on the expected path;In the control subsystem,the lumped uncertainties of system are compensated by constructing backstepping adaptive algorithm. Simultaneously,the auxiliary system is introduced to deal with the problem caused by saturation of system control input. [Results]The guidance-control closed-loop system is proved to be uniformly ultimately bounded by using Lyapunov stability theories.[Conclusions]Simulation results verify the effectiveness and robustness of the proposed method. It has certain reference value for tracking control of backstepping adaptive path of unmanned surface vessels.
引文
[1]Zheng Z W,Feroskhan M.Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances[J].IEEE/ASME Transactions on Mechatronics,2017,22(6):2564-2575.
    [2]Liu L,Wang D,Peng Z H.Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances[J].Neurocomputing,2016,173:799-808.
    [3]Wang N,Sun Z,Su S F,et al.Fuzzy uncertainty observer-based path-following control of underactuated marine vehicles with unmodeled dynamics and disturbances[J].International Journal of Fuzzy Systems,2018,20(8):2593-2604.
    [4]Zhang G Q,Zhang X K,Zheng Y F.Adaptive neural path-following control for underactuated ships in fields of marine practice[J].Ocean Engineering,2015,104:558-567.
    [5]Fossen T I.Handbook of marine craft hydrodynamics and Motion Control[M].United Kingdom:Wiley,2011.
    [6]郭晨,汪洋,孙富春,等.欠驱动水面船舶运动控制研究综述[J].控制与决策,2009,24(3):321-329.Guo C,Wang Y,Sun F C,et al.Survey for motion control of underactuated surface vessels[J].Control and Decision,2009,24(3):321-329(in Chinese).
    [7]刘杨.欠驱动水面船舶的非线性自适应控制研究[D].大连:大连海事大学,2010.Liu Y.The nonlinear adaptive control for underactuated surface vessels[D].Dalian:Dalian Maritime University,2010(in Chinese).
    [8]Wang N,Sun Z,Yin J C,et al.Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J].IEEE Access,2018,6:14059-14070.
    [9]Zheng Z W,Sun L,Xie L H.Error-constrained LOSpath following of a surface vessel with actuator saturation and faults[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(10):1794-1805.
    [10]Miao J M,Wang S P,Tomovic M M,et al.Compound line-of-sight nonlinear path following control of underactuated marine vehicles exposed to wind,waves,and ocean currents[J].Nonlinear Dynamics,2017,89(4):2441-2459.
    [11]Liu L,Wang D,Peng Z H.ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation[J].IEEE Journal of Oceanic Engineering,2017,42(2):477-487.
    [12]Fossen T I,Pettersen K Y,Galeazzi R.Line-ofsight path following for Dubins paths with adaptive sideslip compensation of drift forces[J].IEEE Transactions on Control Systems Technology,2015,23(2):820-827.
    [13]Lekkas A M,Fossen T I.Integral LOS path following for curved paths based on a monotone cubic Hermite spline parametrization[J].IEEE Transactions on Control Systems Technology,2014,22(6):2287-2301.
    [14]Liu T,Dong Z P,Du H W,et al.Path following control of the underactuated USV based on the improved line-of-sight guidance algorithm[J].Polish Maritime Research,2017,24(1):3-11.
    [15]董早鹏,万磊,廖煜雷,等.基于非对称模型的欠驱动USV路径跟踪控制[J].中国造船,2016,57(1):116-126.Dong Z P,Wan L,Liao Y L,et al.Path following control of underactuated USV based on asymmetric model[J].Shipbuilding of China,2016,57(1):116-126(in Chinese).
    [16]Shi Y,Shen C,Fang H Z,et al.Advanced control in marine mechatronic systems:a survey[J].IEEE/ASME Transactions on Mechatronics,2017,22(3):1121-1131.
    [17]Do K D,Pan J.Underactuated ships follow smooth paths with Integral actions and without velocity measurements for feedback:theory and experiments[J].IEEE Transactions on Control Systems Technology,2006,14(2):308-322.
    [18]Shen H Q,Guo C.Path-following control of underactuated ships using actor-critic reinforcement learning with MLP neural networks[C]//Proceedings of the2016 6th International Conference on Information Science and Technology.Dalian,China:IEEE,2016.
    [19]严浙平,段海璞.UUV航迹跟踪的双闭环Terminal滑模控制[J].中国舰船研究,2015,10(4):112-117,142.Yan Z P,Duan H P.A double closed-loop Terminal sliding mode controller for the trajectory tracking of UUV[J].Chinese Journal of Ship Research,2015,10(4):112-117,142(in Chinese).
    [20]曹诗杰,曾凡明,陈于涛.无人水面艇航向航速协同控制方法[J].中国舰船研究,2015,10(6):74-80.Cao S J,Zeng F M,Chen Y T.The course and speed cooperative control method for unmanned surface vehicles[J].Chinese Journal of Ship Research,2015,10(6):74-80(in Chinese).
    [21]Li T S,Li R H,Li J F.Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation[J].Neurocomputing,2011,74(14/15):2277-2283.
    [22]Liu C,Chen C L P,Zou Z J,et al.Adaptive NN-DSC control design for path following of underactuated surface vessels with input saturation[J].Neurocomputing,2017,267:466-474.
    [23]于浩淼.非线性因素约束下欠驱动UUV轨迹跟踪控制方法研究[D].哈尔滨:哈尔滨工程大学,2016.Yu H M.Research on trajectory tracking control for underactuated UUV with nonlinear constrained factors[D].Harbin:Harbin Engineering University,2016(in Chinese).
    [24]Do K D,Pan J.Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices[J].Automatica,2005,41(1):87-95.
    [25]Ma B L,Xie W J.Global asymptotic trajectory tracking and point stabilization of asymmetric underactuated ships with non-diagonal inertia/damping matrices[J].International Journal of Advanced Robotic Systems,2013,10(9):336.