氨基酸脱羧反应研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress on Decarboxylation of Amino Acids
  • 作者:李佳霖 ; 石坚 ; 余秦伟 ; 王为强 ; 杨建明 ; 吕剑
  • 英文作者:LI Jia-lin;SHI Jian;YU Qin-wei;WANG Wei-qiang;YANG Jian-ming;Lü Jian;State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute;
  • 关键词:氨基酸 ; 脱羧反应 ; ; 多相催化
  • 英文关键词:amino acids;;decarboxylation;;amine;;heterogenous catalysis
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:西安近代化学研究所氟氮化工资源高效开发与利用国家重点实验室;
  • 出版日期:2019-04-16 13:47
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 语种:中文;
  • 页:JXHG201908001
  • 页数:7
  • CN:08
  • ISSN:21-1203/TQ
  • 分类号:7-12+18
摘要
氨基酸脱羧是重要的生物质资源转化途径,通过氨基酸脱羧反应能够得到胺及胺的衍生物。该文综述了氨基酸脱羧基的不同方法,包括酶脱羧、化学催化脱羧、热脱羧和光电化学脱羧方法。重点阐述了使用化学催化剂脱羧的研究进展,对均相催化剂和非均相催化剂催化脱羧的催化途径以及机理进行了详细的介绍。中国目前已经成为氨基酸的生产与消费大国,氨基酸工业在食品与饲料等领域的发展已经趋于成熟,但是对氨基酸下游产品的工业化仍然缺少配套的技术与经验。为了应对氨基酸工业核心技术的垄断问题,开发新型高效催化剂与更加高效的工艺路线的研究显得尤为重要。
        Decarboxylation of amino acids is considered to be a significant pathway of renewable resource transformation, and can convert into primary amine, diamine and their derivatives. Various methods of amino acids decarboxylation were reviewed, including enzyme decarboxylation, chemical catalysis decarboxylation, thermal decarboxylation and photoelectrochemical decarboxylation. The research progress of chemical catalysis decarboxylation was expatiated, and the catalytic pathway and mechanism of both homogeneous catalyst and heterogeneous catalyst were introduced in detail. China has become a country with the big amount of amino acids production and consumption. The development of the amino acids industry in food and feed industry has become mature. However, the industry realization of the downstream products is still lack of technology and experiences. Therefore, it is particularly important to develop new efficient catalysts and more efficient process routes.
引文
[1]Liu Junxia(刘俊霞),Ma Jiping(马继平),Cai Jiaying(蔡嘉莹).Studies on the roles of vanadyl sulfate and sodium nitrite in catalytic oxidation of benzyl alcohol with molecular oxygen[J].Science China(Chemistry)(中国科学:化学),2015,(5):526-532.
    [2]Scott E,Peter F,Sanders J.Biomass in the manufacture of industrial products-the use of proteins and amino acids[J].Applied Microbiology and Biotechnology,2007,75(4):751-762.
    [3]Zoebelein H,B?llert V.Dictionary of renewable resources[M].Wiley-VCH,2001:221-224
    [4]Verduyckt J,De Vos D E.Controlled defunctionalisation of biobased organic acids[J].Chemical Communications,2017,53(42):5682-5693.
    [5]Froidevaux V,Negrell C,Caillol S,et al.Biobasedamines:from synthesis to polymers;present and future[J].Chemical Reviews,2016,116(22):14181-14224.
    [6]Dawes G J S,Scott E L,Le N?tre J,et al.Deoxygenation of biobased molecules by decarboxylation and decarbonylation-a review on the role of heterogeneous,homogeneous and bio-catalysis[J].Green Chemistry,2015,17(6):3231-3250.
    [7]Rontein D,Nishida I,Tashiro G,et al.Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme[J].Journal of Biological Chemistry,2001,276(38):35523-35529.
    [8]K?nst P M,Franssen M C R,Scott E L,et al.Stabilization and immobilization of trypanosomabruceiornithine decarboxylase for the biobased production of 1,4-diaminobutane[J].Green Chemistry,2011,13(5):1167-1174.
    [9]K?nst P M,Franssen M C R,Scott E L,et al.A study on the applicability of l-aspartateα-decarboxylase in the biobased production of nitrogen containing chemicals[J].Green Chemistry,2009,11(10):1646-1652.
    [10]Brandt A,Gr?svik J,Hallett J,et al.Cutting-edge research for a greener sustainable future[J].Green Chemistry,2013,15(3):550.
    [11]Médici R,de María P D,Otten L G,et al.A high-throughput screening assay for amino acid decarboxylase activity[J].Advanced Synthesis&Catalysis,2011,353(13):2369-2376.
    [12]Foti M,Médici R,Ruijssenaars H J.Biological production of monoethanolamine by engineered Pseudomonas putida S12[J].Journal of Biotechnology,2013,167(3):344-349.
    [13]Zelechonok Y,Silverman R B.Silver(Ⅰ)/peroxydisulfate-induced oxidative decarboxylation of amino acids.A chemical model for a possible intermediate in the monoamine oxidase-catalyzed oxidation of amines[J].Journal of Organic Chemistry,1992,57(21):5787-5790.
    [14]Cornella J,Sanchez C,Banawa D,et al.Silvercatalysedprotodecarboxylation of ortho-substituted benzoic acids[J].Chemimal Communications,2009,46:7176-7178.
    [15]Cadot S,Rameau N,Mangematin S,et al.Preparation of functional styrenes from biosourced carboxylic acids by copper catalyzed decarboxylation in PEG[J].Green Chemistry,2014,16(6):3089-3097.
    [16]Bi H,Zhao L,Liang Y,et al.The copper-catalyzed decarboxylative coupling of the sp3-hybridized carbon atoms ofα-amino acids[J].Angewandte Chemie International Edition,2009,48(4):792-795.
    [17]Li H,Teng Q,Guan M,et al.Aldehyde-and ketone-induced tandem decarboxylation-coupling(Csp3-Csp)of naturalα-amino acids and alkynes[J].Journal of Organic Chemistry,2010,75(3):783-788.
    [18]Boto A,Hernández R,Suárez E.Tandem radical decarboxylationoxidation of amino acids:amild and efficient method for the generation of N-acyliminium ions and their nucleophilic trapping[J].Tetrahedron Letters,1999,31(49):5945-5948.
    [19]Yan Y,Wang Z.Metal-free intramolecular oxidative decarboxylative amination of primaryα-amino acids with product selectivity[J].Cheminform,2011:9513-9515.
    [20]Ford J P,Immer J G,Lamb H H.Palladium catalysts for fatty acid deoxygenation:influence of the support and fatty acid chain length on decarboxylation kinetics[J].Topics in Catalysis,2012,55(3/4):175-184.
    [21]Immer J G,Lamb H H.Fed-batch catalytic deoxygenation of free fatty acids[J].Energy&Fuels,2010,24(24):5291-5299.
    [22]De Schouwer F,Claes L,Claes N,et al.Pd-catalyzed decarboxylation of glutamic acid and pyroglutamic acid to bio-based 2-pyrrolidone[J].Green Chemistry,2015,17(4):2263-2270.
    [23]Verduyckt J,Van Hoof M,De Schouwer F,et al.Pd Pb-catalyzed decarboxylation of proline to pyrrolidine:highly selective formation of a biobasedamine in water[J].ACS Catalysis,2016,6(11):7303-7310.
    [24]Verduyckt J,Coeck R,De Vos D E.Ru-catalyzed hydrogenationdecarbonylation of amino acids to bio-based primary amines[J].ACSSustainable Chemistry&Engineering,2017,5(4):3290-3295.
    [25]Lammens T M,Le N?tre J,Franssen M C R,et al.Synthesis of biobased succinonitrile from glutamic acid and glutamine[J].Chem Sus Chem,2011,4(6):785-791.
    [26]Stanford M J,Pflughaupt R L,Dove A P.Synthesis of stereoregular cyclic poly(lactide)s via“thiol-ene”clickchemistry[J].Macromolecules,2010,43(16):6538-6541.
    [27]Claes L,Verduyckt J,Stassen I,et al.Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids:a green,zero-waste route to biobased nitriles[J].Chemical Communications,2015,51(30):6528-6531.
    [28]Claes L,Matthessen R,Rombouts I,et al.Bio-based nitriles from the heterogeneously catalyzed oxidative decarboxylation of amino acids[J].Chem Sus Chem,2015,8(2):345-352.
    [29]Araki K,Ozeki T.Amino acids[J/OL].Chem Inform,2007,38(52):[2019-04-11].https://www.researchgate.net/publication/264732813_Amino_Acids.DOI:10.1002/chin.200752236.
    [30]Friedman A H,Morgulis S.The oxidation of amino acids with sodium hypobromite[J].Journal of the American Chemical Society,1936,58(6):909-913.
    [31]Langheld K.über das verhalten der chols?uregegenozon[J].European Journal of Inorganic Chemistry,1908,41(1):1023-1025.
    [32]Dakin H D.The oxidation of amino-acids to cyanides[J].Biochemical Journal,1916,10(2):319.
    [33]Hiegel G A,Lewis J C,Bae J W.Conversion ofα-amino acids into nitriles by oxidative decarboxylation with trichloroisocyanuric acid[J].Chem Inform,2004,34(19):3449-3453.
    [34]Maresh J J,Crowe S O,Ralko A A,et al.Facile one-pot synthesis of tetrahydroisoquinolines from amino acids via hypochlorite-mediated decarboxylation and pictet-spengler condensation[J].Tetrahedron Letters,2014,55(36):5047-5051.
    [35]Fu X,Tian S,Hou S,et al.Development of catalytic decarboxylation of highly sour crude oil[J].Chemical Industry&Engineering Progress,2005,24(9):968-970.
    [36]Hidalgo F J,Zamora R.Conversion of phenylalanine into styrene by2,4-decadienal in model systems[J].J Agric Food Chem,2007,55(12):4902-4906.
    [37]Changi S,Zhu M,Savage P E.Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures[J].Chem Sus Chem,2012,5(9):1743-1757.
    [38]Kibet J K,Khachatryan L,Dellinger B.Molecular products from the thermal degradation of glutamic acid[J].Journal of Agricultural and Food Chemistry,2013,61(32):7696-7704.
    [39]Dai J,Huang Y,Fang C,et al.Electrochemical synthesis of adiponitrile from the renewable raw material glutamic acid[J].Chem Sus Chem,2012,5(4):617-620.
    [40]Matthessen R,Fransaer J,Binnemans K,et al.Electrocarboxylation:towards sustainable and efficient synthesis of valuable carboxylic acids[J].Journal of Organic Chemistry,2014,10(1):2484-2500.
    [41]Carlo C,Giulia B,Carl-Johan W.Photocatalytic decarboxylative reduction of carboxylic acids and its application in asymmetric synthesis[J].Organic Letters,2015,46(7):4228-4231.
    [42]Zuo Z,MacMillan D W.Decarboxylative arylation ofα-amino acids via photoredox catalysis:a one-step conversion of biomass to drug pharmacophore[J].Journal of the American Chemical Society,2015,45(41):5257-5260.