水平管道弱激波扬起沉积粉尘运动特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on movement characteristics of dust raised by weak shock wave in horizontal pipeline
  • 作者:张小良 ; 叶圣军 ; 刘晓晨 ; 李浩 ; 杨璐颖
  • 英文作者:ZHANG Xiaoliang;YE Shengjun;LIU Xiaochen;LI Hao;YANG Luying;College of Urban Construction and Safety Engineering, Shanghai Institute of Technology;
  • 关键词:粉尘 ; 除尘管道 ; 弱激波 ; 膜片 ; 粒子图像测速(PIV)系统
  • 英文关键词:dust;;dust removal pipe;;weak shock wave;;diaphragm;;particle image velocimetry(PIV) testing system
  • 中文刊名:ZAQK
  • 英文刊名:China Safety Science Journal
  • 机构:上海应用技术大学城市建设与安全工学院;
  • 出版日期:2019-01-15
  • 出版单位:中国安全科学学报
  • 年:2019
  • 期:v.29
  • 基金:国家自然科学青年基金资助(51304137)
  • 语种:中文;
  • 页:ZAQK201901010
  • 页数:7
  • CN:01
  • ISSN:11-2865/X
  • 分类号:59-65
摘要
鉴于机械加工行业中,水平除尘管道内沉积粉尘二次扬起形成的爆炸常会给人们的生命财产造成巨大的损失,以常见的铝合金粉尘作为研究对象,通过自主设计的水平管道试验平台、粒子图像测速(PIV)系统等设备试验研究水平除尘管道内沉积粉尘卷扬运动特征。结果表明:在有膜且弱激波作用下,扬尘最大速度随着沉积量的增大呈先增大再减小而后再增大现象;在无膜且弱激波作用下,扬尘最大速度随着沉积量的增大呈先减小后增大现象;无膜片时卷扬粉尘的最大速度均大于同等初始压力作用下有膜片时的最大速度;在弱激波的作用下,膜片能降低二次扬尘的最大速度并改变粉尘云流场状态。
        In view of that in the mechanical processing industry, the deposited dust in the horizontal pipeline often cause huge losses to people's lives and property through explosion resulting from the dust raised secondarily, movement characteristics of dust raised in horizontal pipeline were studied experimentally by using common aluminum alloy dust as the research object, a self-designed horizontal pipeline as the test platform, and a PIV system and other equipment as the means of data acquisition. The results show that under the action of thin membrane and weak shock wave, the maximum velocity of dust increases first, then decreases and then increases with the increase of deposition, that under the action of no membrane and weak shock wave, the maximum velocity of dust decreases first and then increases with the increase of deposition, that membrane makes the maximum velocity of raised dust decrease, and that under the action of weak shock wave, the membrane can reduce the maximum velocity of secondary dust and change the flow field of dust cloud.
引文
[1] 陈淑琴,李念平,关军,等.长沙市住宅建筑冬季能源使用结构的调查与分析研究[J]. 暖通空调, 2005,34 (5): 14-17.CHEN Shuqin, LI Nianping, GUAN Jun, et al. Investigation and analysis of winter energy utilization structure of residential buildings in Changsha[J]. Heating Ventilating & Air Conditioning, 2005,34 (5): 14-17.
    [2] SIEGEL Jeffrey, WALKER Iain. Deposition of biological aerosols on HVAC heat exchange[J]. Lawrence Berkeley National Laboratory, 2001,35(2): 5-12.
    [3] BOIKO V M, PAPYRIN A N. Dynamics of the formation of a gas suspension behind a shock wave sliding over the surface of a loose material[J].Combustion Explosion Shock Waves,1987,23(2), 231-235.
    [4] WYPYCH P, COOK D,COOPER P. Controlling dust emissions and explosion hazards in powder handling plants[J].Chemical Engineering and Processing,2005,44: 323-326.
    [5] DUFAUD O, TRAORé M, PERRIN L,et al. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere[J]. Journal of Loss Prevention in the Process Industries,2010,23(2): 226-236.
    [6] PICKLE J H. A model for coal dust duct explosions[J]. Combustion and Flame,1982, 44 (1/2/3): 153-168.
    [7] 李洪钟. 垂直气力稀相输送过程中压力降计算方法的探讨[J].化学工程, 1978(3): 16-18.LI Hongzhong. Discussion on calculation method of pressure drop in vertical pneumatic dilute phase conveying process[J]. Chemical Engineering, 1978(3): 16-18.
    [8] 张丽薇. 气溶胶颗粒在矩形风管系统中沉降特性的试验研究[D]. 长沙:湖南大学, 2007.ZHANG Liwei. Experimental study on regularities of aerosol particles deposition in rectangular ventilation ducts[D]. Changsha:Hunan University, 2007.
    [9] GAO Wei,MOGI Toshio, SUN Jinhua,et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber[J]. Fuel,2013, 113: 86-96.
    [10] 高伟, 阿部俊太郎, 荣建忠,等.气流特征对水平长管内石松子粉尘爆炸火焰结构的影响[J].爆炸与冲击,2015,35(3): 372-379.GAO Wei, ABE Shuntaro, RONG Jianzhong, et al. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion and Shock Waves,2015,35(3): 372-379.
    [11] 薄涛. 水平管道爆炸装置中粉尘爆炸特性研究[J].山西化工, 2008,28(5): 14-16.BO Tao. The experimental study of dust explosion in horizontal pipeline type exploder[J]. Shanxi Chemical Industry, 2008,28(5): 14-16.
    [12] 秦涧, 谭迎新, 尉存娟. 水平管道内铝粉爆炸特性的试验研究[J].中国安全科学学报,2011,21(4): 66-70.QIN Jian, TAN Yingxin, YU Cunjuan. Experimental study on aluminum dust explosion characteristics in horizontal pipeline equipment[J]. China Safety Science Journal, 2011,21(4): 66-70.
    [13] 张一博, 谭迎新.激波诱导铝粉二次爆炸的试验研究[J].中国安全科学学报.2012,22(10): 61-64.ZHANG Yibo, TAN Yingxin. Experimental study on secondary explosion of aluminum dust detonated by shock wave[J]. China Safety Science Journal, 2012,22(10): 61-64.
    [14] 文虎, 杨玉峰, 王秋红,等. 矩形管道中微米级铝粉爆炸试验[J].爆炸与冲击,2018,38(5): 993-998.WEN Hu, YANG Yufeng, WANG Qiuhong, et al. Experimental study on micron-sized aluminum dust explosion in a rectangular pipe[J]. Explosion and Shock Waves,2018,38(5): 993-998.
    [15] 雷伟刚, 毕海普, 王凯全. 弯管内铝粉二次爆炸及抑爆试验研究[J].中国安全科学学报,2017,27(11): 43-48.LEI Weigang, BI Haipu, WANG Kaiquan. Experimental study on secondary explosion of aluminum powder in elbow pipeline and its suppression[J]. China Safety Science Journal, 2017, 27(11): 43-48.
    [16] 张苹.激波诱导气相流场中的颗粒群输运规律研究[D].杭州:浙江理工大学,2013.ZHANG Ping. Investigation on the laws of particles' transportation in gas phase flow field induced by shock waves[D]. Hangzhou:Zhejiang Sci-Tech University,2013.
    [17] 叶圣军. 除尘管道内沉积颗粒物(铝合金粉)形成爆炸规律研究[D]. 上海:上海应用技术大学,2016.YE Shengjun. Study on deposition of particulate dust pipe (aluminum alloy powder) of explosive forming[D].Shanghai:Shanghai Institute of Technology,2016.
    [18] 张博.激波与微粒相互作用试验研究[D].南京:南京理工大学,2008.ZHANG Bo. Study on interaction between shock wave and particles[D]. Nanjing:Nanjing University of Science & Technology,2008.