高非线性光子晶体光纤中的声光相互作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction of Acoustic Phonons and Photons in Highly Nonlinear Photonic Crystal Fibers
  • 作者:丁思明 ; 杨四刚 ; 杨益 ; 李进延 ; 陈明华 ; 谢世钟
  • 英文作者:Ding Siming;Yang Sigang;Yang Yi;Li Jinyan;Chen Minghua;Xie Shizhong;Beijing National Research Center for Information Science and Technology(BNRist),Department of Electronic Engineering,Tsinghua University;Wuhan National Laboratory of Optoelectronics;
  • 关键词:非线性光学 ; 光子晶体光纤 ; 导引声波布里渊散射 ; 声子 ; Sagnac环
  • 英文关键词:nonlinear optics;;photonic crystal fiber;;guided acoustic-wave Brillouin scattering;;phonon;;Sagnac loop
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:北京信息科学与技术国家研究中心清华大学电子工程系;武汉光电国家研究中心;
  • 出版日期:2019-05-10
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.509
  • 基金:国家自然科学基金(61335002)
  • 语种:中文;
  • 页:JJZZ201905028
  • 页数:6
  • CN:05
  • ISSN:31-1339/TN
  • 分类号:291-296
摘要
高非线性光子晶体光纤具有小纤芯、大折射率对比度的特点,其周期性的空气孔结构使得导引声波布里渊散射(GAWBS)激发的声子被束缚在纤芯区域,产生显著的声光相互作用。声子通过调制光纤材料的折射率,从而对光波的相位进行调制。利用Sagnac干涉环将相位调制转化为强度调制,在光子晶体光纤中实现了1550 nm和1060 nm波段GAWBS声子的激发和探测。实验测得在1550 nm和1060 nm波长抽运下声子基模频率均约为1.24 GHz,验证了前向布里渊散射声子频率与抽运光波长无关的理论。
        Highly nonlinear photonic crystal fibers have the characteristics of small core and large refractive index contrast. Due to its periodic air hole structure, the phonons generated by the guided acoustic-wave Brillouin scattering(GAWBS) are tightly trapped in the core area and interact significantly with photons. The refractive index of the fiber will be modulated by phonons, resulting in a phase modulation on optical waves. Using the Sagnac interferometry to transform phase modulation to intensity modulation, we demonstrate the generation and detection of phonons by GAWBS in the photonic crystal fiber in the 1550 nm and 1060 nm bands, respectively. The experimental results show that the fundamental mode frequency of acoustic phonons is 1.24 GHz for both cases with the pump wavelengths of 1550 nm and 1060 nm, respectively, which verifies the theory that the phonon frequency in forward Brillouin scattering is independent of the pump wavelength.
引文
[1] Shelby R M,Levenson M D,Bayer P W.Guided acoustic-wave Brillouin scattering[J].Physical Review B,1985,31(8):5244-5252.
    [2] Kang M S,Nazarkin A,Brenn A,et al.Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators[J].Nature Physics,2009,5(4):276-280.
    [3] Kang M S,Joly N Y,Russell P S J.Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances[J].Optics Letters,2013,38(4):561-563.
    [4] Broderick N G R,Monro T M,Bennett P J,et al.Nonlinearity in holey optical fibers:measurement and future opportunities[J].Optics Letters,1999,24(20):1395-1397.
    [5] sElser D,Andersen U L,Korn A,et al.Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers[J].Physical Review Letters,2006,97(13):133901.
    [6] Shibata N,Nakazono A,Taguchi N,et al.Forward Brillouin scattering in holey fibers[J].IEEE Photonics Technology Letters,2006,18(2):412-414.
    [7] Dainese P,Russell P S J,Wiederhecker G S,et al.Raman-like light scattering from acoustic phonons in photonic crystal fiber[J].Optics Express,2006,14(9):4141-4150.
    [8] Kang M S,Brenn A,Wiederhecker G S,et al.Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers[J].Applied Physics Letters,2008,93(13):131110.
    [9] Wiederhecker G S,Brenn A,Fragnito H L,et al.Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers[J].Physical Review Letters,2008,100(20):203903.
    [10] Kang M S,Joly N Y,Russell P S J.Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances[J].Optics Letters,2013,38(4):561-563.
    [11] Pang M,Jiang X,He W,et al.Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core[J].Optica,2015,2(4):339-342.
    [12] Pang M,He W,Russell P S J.Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber[J].Optics Letters,2016,41(19):4601-4604.
    [13] Antman Y,Clain A,London Y,et al.Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering[J].Optica,2016,3(5):510-516.
    [14] Otterstrom N T,Behunin R O,Kittlaus E A,et al.A silicon Brillouin laser[J].Science,2018,360(6393):1113-1116.
    [15] Gundavarapu S,Brodnik G M,Puckett M,et al.Sub-hertz fundamental linewidth photonic integrated Brillouin laser[J].Nature Photonics,2019,13(1):60-67.
    [16] Wiederhecker G S,Brenn A,Fragnito H L,et al.Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers[J].Physical Review Letters,2008,100(20):203903.
    [17] Dainese P,Russell P S J,Wiederhecker G S,et al.Raman-like light scattering from acoustic phonons in photonic crystal fiber[J].Optics Express,2006,14(9):4141-4150.