型钢增强ECC组合梁的受弯性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flexural behavior of steel reinforced engineered cementitious composite beams
  • 作者:董冰清 ; 潘金龙 ; 鲁聪
  • 英文作者:Dong Bingqing;Pan Jinlong;Lu Cong;Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University;
  • 关键词:高延性纤维增强水泥基复合材料 ; 型钢增强ECC ; 组合梁 ; 受弯性能 ; 极限承载力
  • 英文关键词:engineered cementitious composite(ECC);;steel reinforced ECC(SRECC);;composite beam;;flexural behavior;;ultimate load-carrying capacity
  • 中文刊名:DNDY
  • 英文刊名:东南大学学报(英文版)
  • 机构:东南大学混凝土及预应力混凝土教育部重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Southeast University(English Edition)
  • 年:2019
  • 期:v.35
  • 基金:The National Natural Science Foundation of China(No.51778183);; the National Key Research and Development Program of China(No.2016YFC0701907);; the Distinguished Young Scholar Foundation of Jiangsu Province(No.BK20160027)
  • 语种:英文;
  • 页:DNDY201901011
  • 页数:11
  • CN:01
  • ISSN:32-1325/N
  • 分类号:74-84
摘要
为了解决型钢增强混凝土组合梁的耐久性问题,提出一种包括型钢、钢筋和ECC材料的新型组合梁.通过理论分析研究了型钢增强ECC组合梁在受力过程中各个阶段的裂缝发展和截面应力应变状态,并提出了型钢增强ECC组合梁极限承载力的理论计算模型及简化计算方法;基于理论模型,计算出了组合梁构件的弯矩-曲率关系,并通过有限元分析验证了理论模型的正确性.最后,通过参数分析分析了基体种类、配钢率、配筋率、ECC抗压强度和拉伸延性对组合梁受力性能的影响.结果表明,用ECC代替混凝土可以有效提高组合梁的承载力和延性;增大配钢率和配筋率可以提高组合梁的承载力,但延性却随着配钢率的增大而降低;增大ECC的抗压强度可以同时提高组合梁的承载力和延性,改变ECC的极限拉应变却对组合梁的受力性能影响不大.
        In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.
引文
[1] Wakabayashi M. A historical study of research on composite construction in Japan [C]// Composite Construction in Steel and Concrete, ASCE. NewHampshire, USA, 2010: 400-427.
    [2] Weng C C, Yen S I, Jiang MH. Experimental study on shear splitting failure of full-scale composite concrete encased steel beams[J].Journal of Structural Engineering, 2002, 128 (9): 1186-1194. DOI:10.1061/(asce)0733-9445(2002)128:9(1186).
    [3] Li M, Li V C. High-early-strength ECC for rapid durable repair: Material properties [J]. ACI Materials Journal, 2011,108 (1):3-12. DOI:10.14359/51664210.
    [4] Li V C. Tailoring ECC for special attributes: A review[J].International Journal of Concrete Structures and Materials, 2012, 6 (3): 135-144. DOI:10.1007/s40069-012-0018-8.
    [5] Zhang J, Leung C K Y, Gao Y. Simulation of crack propagation of fiber reinforced cementitious composite under direct tension[J].Engineering Fracture Mechanics, 2011, 78 (12): 2439-2454. DOI:10.1016/j.engfracmech.2011.06.003.
    [6] Fischer G, Li V C. Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions[J].ACI Structural Journal, 2003, 100 (1): 25-35. DOI:10.14359/12436.
    [7] Fischer G, Li V C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites (ECC)[J].ACI Structural Journal, 2002, 99 (1): 104-111. DOI:10.14359/11041.
    [8] Deng MK, Lu H S, Yang K P, et al. Experimental study on shear behavior of steel reinforced high ductile concrete short beams[J].Journal of Building Structures, 2015, 36 (10): 73-80. DOI:10.14006/j.jzjgxb.2015.10.009.(in Chinese)
    [9] Maalej M, Li V C. Flexural/tensile-strength ratio in engineered cementitious composites[J].Journal of Materials in Civil Engineering, 1994, 6 (4): 513-528. DOI:10.1061/(asce)0899-1561(1994)6:4(513).
    [10] Maalej M, Li V C. Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability [J]. ACI, Structural Journal, 1995, 92 (2):167-176. DOI:10.14359/1150.
    [11] Dong L T, Pan J L, Yuan F,et al. Flexural behaviors of steel reinforced ECC/concrete composite beams [J]. Journal of Southeast University(English Edition), 2012, 28 (2):195-202. DOI: 10.3969/j.issn.1003-7985.2012.02.012.
    [12] Pan J L, Gu J, Chen J H. Theoretical modeling of steel reinforced ECC column under eccentric compressive loading[J].Science China: Technological Sciences, 2015, 58 (5): 889-898. DOI:10.1007/s11431-015-5798-z.
    [13] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50010—2010 Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [14] Yuan F, Pan J L, Leung C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer[J].Journal of Composites for Construction, 2013, 17 (5): 591-602. DOI:10.1061/(asce)cc.1943-5614.0000381.
    [15] Zhou J J, Pan J L, Leung C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J].Journal of Materials in Civil Engineering, 2015, 27 (1): 04014111. DOI:10.1061/(asce)mt.1943-5533.0001034.
    [16] Wu Y F, Oehlers D J, Griffith MC. Rational definition of the flexural deformation capacity of RC column sections[J].Engineering Structures, 2004, 26(5): 641-650. DOI:10.1016/j.engstruct.2004.01.001.