电阻率与强度性能的关联及铜合金性能分区
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation between electrical resistivity and strength of copper alloy and material classification
  • 作者:李鸿明 ; 董闯 ; 王清 ; 李晓娜 ; 赵亚 ; 周大雨
  • 英文作者:Li Hong-Ming;Dong Chuang;Wang Qing;Li Xiao-Na;Zhao Ya-Jun;Zhou Da-Yu;Key Laboratory of Materials Modification, Dalian University of Technology;College of Physics and Electronics information, Inner Mongolia University for Nationalities;
  • 关键词:铜合金 ; 化学近程有序 ; 电阻率 ; 强度
  • 英文关键词:Cu alloys;;short-range order;;electrical resistivity;;strength
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:大连理工大学材料改性重点实验室;内蒙古民族大学物理与电子信息学院;
  • 出版日期:2018-12-20 15:25
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2017YFB0306100);; 国家自然科学基金(批准号:11674045);; 内蒙古自治区自然科学基金(批准号:2018LH5001)资助的课题~~
  • 语种:中文;
  • 页:WLXB201901016
  • 页数:13
  • CN:01
  • ISSN:11-1958/O4
  • 分类号:197-209
摘要
铜合金以低电阻率为特征,由于电阻率与强度存在着共同的微观结构机理,两者往往协同变化,而导致难以对合金进行性能的全面评估和选材.本文以Cu-Ni-Mo合金作为研究对象,以团簇结构[Mo_1-Ni_(12)]构建固溶体的近程序结构模型,解析了电阻率和强度依赖于成分的定量变化规律,并定义了拉伸强度/电阻率的值为代表合金本质特性的"强阻比",得到了完全固溶态Cu-Ni-Mo合金的强阻比为7×10~8MPa/?·m,完全析出态的强阻比为(310—490)×10~8MPa/?·m.进而应用强阻比对常用铜合金进行了性能分区,给出铜合金材料选材的依据,得出了基于Cu-(Cr, Zr, Mg, Ag, Cd)等二元基础体系的铜合金适用于高强高导应用,而基于Cu-(Be, Ni, Sn, Fe, Zn, Ti, Al)等为基础二元体系的铜合金不能实现高强高导.该强阻比为310的特征性能分界线的发现为合金性能的全面评估提供了量化依据,可指导高强高导铜合金的选材和研发.
        Low electrical resistivity and high strength are a basic requirements for copper alloys. However, it has been widely known that these two properties are contradictory to each other: high electrical resistivity means extensive electron scattering by obstacles in the alloy, which in turn blocks dislocation movement to enhance mechanical strength. That is to say, any increase in strength necessarily brings about an increase in electrical resistivity. Essentially, strength and electrical resistivity are coupled in metal alloy as both are issued from a similar microstructural mechanism. That is why it is generally difficult to evaluate these alloys comprehensively and to select the materials appropriately.The present work addresses this fundamental problem by analyzing the dependence of hardness(in relation to strength) and electrical resistivity on solute content for deliberately designed ternary [Mo_(y/(y+12))Ni_(12/(y+12))]_xCu_(100-x) alloys(at.%), where x = 0.3–15.0 is the total solute content, y = 0.5–6.0 is the ratio between Mo and Ni. The Mo-centered and Ni-nearest-neighbored [Mo_1-Ni_(12)] cluster structure are used to construct a short-range-order structure model of solid solution. The cluster [Mo_1-Ni_(12)] in solution enhances the strength, without increasing the electrical resistivity much, for the solutes are organized into cluster-type local atomic aggregates that reduce the dislocation mobility more strongly than electron scattering. The short-range-order structure has an essentially identical function for strength and electrical resistivity. In this solution state, both hardness and resistivity increase linearly with solute content increasing. When the solute constituents do not meet the requirement for ideal solution, i.e., Mo-Ni ratio exceeds 1/12, the maximum value that the cluster [Mo_1-Ni_(12)] can accommodate, the solid solution should be destabilized and precipitation should occur, such as Mo precipitation in this case. The deviation from the linear change of resistivity and strength with solute content are caused by different alloy states, that is, solid solution and precipitation, which contribute to the resistivity and strength differently. Here we define a new term, the ratio of residual tensile strength to residual electrical resistivity,i.e. the "strength/resistivity ratio" in short, which represents an essential property of the alloy system. This ratio is7×10~8MPa/?·m) for the Cu-Ni-Mo alloy in complete solid solution state, and it is in a range of(310–490) 10~8MPa/?·m)for the Cu-Ni-Mo alloys in a fully precipitation state(i.e., most of Mo solute atoms precipitate out of the Cu matrix).Finally this new parameter is applied to the classification of common copper industrial alloys for the purpose of laying the basis for material selection. It is found that the strength/resistivity ratio of 310 effectively marks the boundary between the fully precipitated state and precipitation plus solution state. Using this criterion, it is concluded that alloys based on Cu-(Cr, Zr, Mg, Ag, Cd) are suitable for high-strength and high-conductivity applications. However, alloys based on binary systems Cu-(Be, Ni, Sn, Fe, Zn, Ti, Al) cannot realize the same purpose. The finding of the line dividing the characteristic properties of alloy having a strength-resistivity-ratio of 310 provides a key quantitative basis for comprehensively evaluating the alloy performance, which can effectively guide material selection and development of high strength and high conductivity copper alloys.
引文
[1]Liu D H 2012 M.S.Thesis(Nanchang:Jiangxi university of Science and Technology)(in Chinese)[刘东辉2012硕士学位论文(南昌:江西理工大学)]
    [2]Chen L P,Zhou Q 2009 Mater.Heat Treat.38 14(in Chinese)[陈乐平,周全2009材料热处理技术38 14]
    [3]Lu K,Lu L,Suresh S 2009 Science 324 349
    [4]Zhao D M,Dong Q M,Liu P,Jin Z H,Kang B X 2001Chin.J.Nonferrous Met.11 21(in Chinese)[赵冬梅,董企铭,刘平,金志浩,康布熙2001中国有色金属学报11 21]
    [5]Motohisa M 1990 J.Japan CU and Brass Research Association 29 18
    [6]Mu S G 2008 Ph.D.Dissertation(Changsha:Central South University)(in Chinese)[慕思国2008博士学位论文(长沙:中南大学)]
    [7]Jia S G,Liu P,Ren F Z,Tian B H,Zheng M S,Zhou G S 2005 J.Funct.Mater.36 206(in Chinese)[贾淑果,刘平,任风章,田保红,郑茂盛,周根树2005功能材料36206]
    [8]Motohisa M 1998 J.Japan Copper and Brass Research Association 27 93
    [9]Lei Q 2014 Ph.D.Dissertation(Changsha:Central South University)(in Chinese)[雷前2014博士学位论文(长沙:中南大学)]
    [10]Ding Y T,Li L J,Xu G J,Kou S Z,Ding Z F 2004Electric Wire&Cable 2 3(in Chinese)[丁雨田,李来军,许广济,寇生中,丁宗富2004电线电缆2 3]
    [11]Li H M,Zhao Y J,Li X N,Zhou D Y,Dong C 2016 J.Phys.D:Appl.Phys.49 035306
    [12]Li H M,Zhou D Y,Dong C 2018 J.Electron.Mater.DOI10.1007/s11664-018-6709-4
    [13]Zhao Y J 2012 M.S.Thesis(Dalian:Dalian University of Technology)(in Chinese)[赵亚军2012硕士学位论文(大连:大连理工大学)]
    [14]Chen J X,Qiang J B,Wang Q,Dong C 2012 Acta Phys.Sin.61 046102(in Chinese)[陈季香,羌建兵,王清,董闯2012物理学报61 046102]
    [15]Dong D D 2018 Ph.D.Dissertation(Dalian:Dalian University of Technology)(in Chinese)[董丹丹2018博士学位论文(大连:大连理工大学)]
    [16]Matthiessen A,Vogt C 1864 Phil.Trans.R.Soc.Lond.154 167
    [17]He Q J 1982 The Mechanical Properties of Metals(Vol.1)(Beijing:Metallurgical Industry Press)p193(in Chinese)[何启基1982金属的力学性质(第一版)(北京:冶金工业出版社)第193页]
    [18]Feng R 1987 Metal Physics(Vol.1)(Beijing:Science Press)p154(in Chinese)[冯端1987金属物理学(第一版)(北京:科学出版社)第154页]
    [19]Zhang P,Li S X,Zhang Z F 2011 Mater.Sci.Eng.A529 62
    [20]Metals A S f,Davis J R 2009 ASM Handbook.2 Properties and Selection:Nonferrous Alloys and SpecialPurpose Materials(William Park Woodside:American Society for Metals)
    [21]Li X N,Liu L J,Zhang X Y,Chu J P,Wang Q,Dong C 2012 J.Electron.Mater.41 3447
    [22]Jiang W 2009 M.S.Thesis(Hefei:Hefei University of Technology)(in Chinese)[姜伟2009硕士学位论文(合肥:合肥工业大学)]
    [23]Xiao S L 2004 M.S.Thesis(Changsha:Central South University)(in Chinese)[肖世玲2004硕士学位论文(长沙:中南大学)]
    [24]Zhao Z D 1993 Handbook on Copper and Copper Alloy Materials(Vol.1)(Beijing:Science Press)pp94-400(in Chinese)[赵祖德1993铜及铜合金材料手册(第1版)(北京:科学出版社)第94-400页]
    [25]Jiang F,Chen X B,Jiang L,Chen M 2009 Hot Working Technol.38 1(in Chinese)[姜锋,陈小波,蒋龙,陈蒙2009热加工工艺38 1]
    [26]Jin Y,Adachi K,Takeuchi T,Suzuki H G 1998 J.Mater.Sci.33 1333
    [27]Wang B W,Wang T,Wang Z T 2006 Copper Alloy and its Processing Technology(Beijing:Chemical Industry Press)p75(in Chinese)[王碧文,王涛,王祝堂2006铜合金及其加工技术(北京:化学工业出版社)第75页]
    [28]Lei J G 2007 Ph.D.Dissertation(Xi’an:Xi’an University of technology)(in Chinese)[雷静果2007博士学位论文(西安:西安理工大学)]
    [29]Kin S H,Lee D N 2002 Metall.Mater.Trans.33 1605
    [30]Chen X B 2008 M.S.Thesis(Changsha:Central South University)(in Chinese)[陈小波2008硕士学位论文(长沙:中南大学)]
    [31]Li Z Y,Shen J,Cao F Y,Fan H B,Jiang Z L,Li Q C1998 Powder Metall.Technol.16 59(in Chinese)[李振宇,沈军,曹福洋,范洪波,蒋祖龄,李庆春1998粉末冶金技术16 59]
    [32]Singh R P,Lawley A,Friedman S,Murty Y V 1991Mater.Sci.Eng.A 145 243
    [33]Ma J K,Wang Y H,Yang Y T,Zhang J T,Li Q S,Hao W X 2015 Mater.Rev.B 29 96(in Chinese)[马健凯,王宥宏,杨雨潭,张俊婷,李秋书,郝维新2015材料导报2996]
    [34]Zhang Y 2009 Ph.D.Dissertation(Xi’an:Xi’an University of Technology)(in Chinese)[张毅2009博士学位论文(西安:西安理工大学)]
    [35]Ning Y T,Zhang X H,Wu Y J 2007 Trans.Nonferr.Met.Soc.China 17 378
    [36]Wu J J,Lei T Q,Zhang Y,Jiang T F,Li G B 1999Powder Metall.Technol.17 195(in Chinese)[武建军,雷廷权,张运,姜延飞,李国彬1999粉末冶金技术17 195]
    [37]Liu P 2011 Funct.Mater.Inf.4 10(in Chinese)[刘平2011功能材料信息4 10]
    [38]Song J S,Hong S I,Park Y G 2005 J.Alloys Compd.388 69
    [39]Gao H Y,Wang J,Sun B D 2009 J.Alloys Compd.469580
    [40]Wu Z W,Chen Y,Meng L 2009 J.Alloys Compd.481236
    [41]Verhoeven J D,Chueh S C,Gibson E D 1989 J.Mater.Sci.24 1748
    [42]Hong S I,Hill M A 1998 Acta Metall.46 4111
    [43]Cao Y W,Ma J S,Tang X G,Wang B Y,Wang S H,Li H 1998 Trans.Metall.Heat Treat.19 32(in Chinese)[曹育文,马莒生,唐祥云,王碧云,王世红,李红1998金属热处理学报19 32]
    [44]Liu P,Zhao D M,Tian B H 2005 High-Performance Copper Alloy and its Processing Technology(Vol.1)(Beijing:Metallurgical Industry Press)pp101-215(in Chinese)[刘平,赵冬梅,田保红2005高性能铜合金及其加工技术(第1版)(北京:冶金工业出版社)第101-215页]
    [45]Renaud C V,Gregory E,Wong J 1986 Adv.Cryog.Eng.Mater.32 443
    [46]Shen Y T,Cui C X,Meng F B[46]1999 Acta Metall.Sin.35 888(in Chinese)[申玉田,崔春翔,孟凡斌1999金属学报35 888]
    [47]Mattissen D,Raabe D,Heringhaus F 1999 Acta Mater.47 1627
    [48]Pan Z Y,Wang M P,Li Z,Li S H,Chen C 2007 Mater.Rev.21 86(in Chinese)[潘志勇,汪明朴,李周,黎三华,陈畅2007材料导报21 86]
    [49]Tenwick M J,Davies H A 1988 Mater.Sci.Eng.97 543
    [50]Zhao J G,Gong X X,Yu Y P,Bu J X 1989 Shanghai Metals(Nonferrous Fascicule)10 15(in Chinese)[赵建国,龚学湘,俞玉平,卜锦鑫1989上海金属(有色分册)1015]
    [51]Nagarjuna S,Balasubramanian K,Sarma D S 1999 J.Mater.Sci.34 2929
    [52]Nagarjuna S,Sharma K K,Sudhakar I,Sarma D S 2001Mater.Sci.Eng.A 313 251