改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects and Mechanisms of Methyl Orange Removal from Aqueous Solutions by Modified Rice Shell Biochar
  • 作者:史月月 ; 单锐 ; 袁浩然
  • 英文作者:SHI Yue-yue;SHAN Riu;YUAN Hao-ran;Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences;Key Laboratory of Renewable Energy,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development;Nano Science and Technology Institute,University of Science and Technology of China;
  • 关键词:改性 ; 氯化锌 ; 稻壳生物炭 ; 甲基橙(MO) ; 吸附
  • 英文关键词:modified;;zinc chloride;;rice husk biochar;;methyl orange(MO);;adsorption
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院广州能源研究所;中国科学院可再生能源重点实验室;广东省新能源和可再生能源研究开发与应用重点实验室;中国科学技术大学纳米科技学院;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51776211,51676194);; 广东省科技项目(2017B040404009,2017B040404011)
  • 语种:中文;
  • 页:HJKZ201906034
  • 页数:10
  • CN:06
  • ISSN:11-1895/X
  • 分类号:293-302
摘要
本文以废弃稻壳为原料,通过不同改性方法将其制成生物炭吸附剂,并用于水体中甲基橙(MO)的吸附.通过氮吸附、X射线衍射(XRD)、傅立叶转换红外光谱(FT-IR)、扫描电镜分析(SEM)、热重分析(TG)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术分析了改性剂种类、浸渍比和热解温度对生物炭的物理化学性质及对MO吸附量的影响,发现热解温度为400℃,以ZnCl_2为改性剂,浸渍比为2∶1时制备的生物炭Z2RT400对MO的去除效果最好.以Z2RT400为吸附剂,探究吸附剂添加量、吸附时间、初始污染物浓度、溶液pH等对甲基橙吸附效果的影响,结果表明,饱和吸附时间为420 min,吸附反应的最佳pH为4,当吸附剂用量为10 mg,初始甲基橙浓度为2 000 mg·L~(-1)时,Z2RT400对MO的最大吸附量可达1 967. 72 mg·g~(-1);当吸附剂添加量为80 mg时,去除率最高可达99. 52%.此外,对吸附机制进行分析,发现吸附等温线数据符合Freundlich模型,吸附动力学数据符合拟二级动力学模型,说明吸附以化学吸附为主,物理吸附为辅.因此,废弃稻壳为原料改性制备的生物炭可作为高效的有机染料吸附剂,并应用于水体中污染物的治理.
        Waste rice shell(RS) was used for modified biochar preparation via different activation methods. The types of modifiers,impregnation ratio,and pyrolysis temperature have significant effects on the characteristics of biochar and the adsorption capacity of methyl orange(MO). The physical and chemical properties of modified biochar and MO adsorption mechanisms were analyzed by N_2-adsorption,X-ray diffraction(XRD),Fourier infrared spectroscopy(FT-IR),field emission scanning electron microscopy(SEM),thermogravimetric analyzer(TG), transmission electron microscopy(TEM), and X-ray photoelectron spectroscopy(XPS)techniques. The results showed that the modified biochar(named Z2RT400) prepared at 400℃ with a mass ratio of 2∶ 1(ZnCl_2∶ rice shell) had the highest adsorption capacity for MO. Under the following conditions with a solution p H value of 4,adsorbent dosage of 10 mg,initial MO concentration of 2 000 mg·L~(-1),and reaction time of 420 min,the maximum adsorption capacity of Z2RT400 was 1 967. 72 mg·g~(-1). When the adsorbent dosage was 80 mg,the maximum removal rate reached 99. 52%. The adsorption data fitted well with the pseudo-second order kinetic model and Freundlich isotherm model,which indicates that chemical adsorption is the main adsorption mechanism and physical adsorption is the auxiliary adsorption mechanism. Therefore,the waste rice shell derived biochar can be used as a highly efficient dye adsorbent in applications such as sewage treatment.
引文
[1] Sponza D T. Toxicity studies in a chemical dye production industry in Turkey[J]. Journal of Hazardous Materials,2006,138(3):438-447.
    [2]刘剑,朱秋香,谭雄文,等.改性活性炭对甲基橙的吸附[J].过程工程学报,2016,16(2):222-227.Liu J,Zhu Q X,Tan X W,et al. Adsorption of methyl orange on modified activated carbon[J]. The Chinese Journal of Process Engineering,2016,16(2):222-227.
    [3]刘其霞,何丽芬,杨佳慧,等.黄麻纤维活性炭对亚甲基蓝和甲基橙溶液的吸附性能研究[J].产业用纺织品,2012,(12):27-32.Liu Q X,He L F,Yang J H,et al. Adsorption property of jute fiber-based activated carbon on methyl blue and methyl orange[J]. Technical Textiles,2012,(12):27-32.
    [4] Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere,2014,99:19-33.
    [5]任晓莉,康洁,朱开金,等.污泥生物炭对偶氮染料的吸附性能研究[J].应用化工,2017,47(1):113-120.Ren X L,Kang J,Zhu K J,et al. Studies on the adsorption characteristics of AZO dyes on sludge biochar[J]. Applied Chemical Industry,2017,47(1):113-120.
    [6]季雪琴,吕黎,陈芬,等.秸秆生物炭对有机染料的吸附作用及机制[J].环境科学学报,2016,36(5):1648-1654.Ji X J,Lv L,Chen F,et al. Sorption properties and mechanisms of organic dyes by straw biochar[J]. Acta Scientiae Circumstantiae,2016,36(5):1648-1654.
    [7] Aboua K N,Yobouet Y A,Yao K B,et al. Investigation of dye adsorption onto activated carbon from the shells of Macoréfruit[J]. Journal of Environmental Management,2015,156:10-14.
    [8] Gokce Y,Aktas Z. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol[J]. Applied Surface Science,2014,313:352-359.
    [9] Li M J,Liu C M,Cao H B,et al. KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(36):14844-14851.
    [10] Sun L,Yuan D,Wan S G,et al. Adsorption performance and mechanisms of methylene blue removal by non-magnetic and magnetic particles derived from the Vallisneria natans Waste[J].Journal of Polymers and the Environment,2018,26(7):2992-3004.
    [11] Anfruns A,García-Suárez E J,Montes-Morán M A,et al. New insights into the influence of activated carbon surface oxygen groups on H2O2decomposition and oxidation of pre-adsorbed volatile organic compounds[J]. Carbon 2014,77:89-98.
    [12] Sim?es dos Reis G,Wilhelm M,Canuto de Almeida Silva T,et al. The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis[J]. Applied Thermal Engineering,2016,93:590-597.
    [13] Gong X M, Huang D L, Liu Y G, et al. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments:For heavy metals stabilization and dye adsorption[J]. Bioresource Technology,2018,253:64-71.
    [14] Patel K P,Tank S K,Patel K M,et al. Removal of cadmium and zinc ions from aqueous solution by using two type of husks[J]. APCBEE Procedia,2013,5:141-144.
    [15]王艳红,李盟军,唐明灯,等.稻壳基生物炭对生菜Cd吸收及土壤养分的影响[J].中国生态农业学报,2015,23(2):207-214.Wang Y H,Li M J,Tang M D,et al. Effect of rice husk biochar on lettuce Cd uptake and soil fertility[J]. Chinese Journal of Eco-Agriculture,2015,23(2):207-214.
    [16] Haque E,Jun J W,Jhung S H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metalorganic framework material,iron terephthalate(MOF-235)[J].Journal of Hazardous Materials,2011,185(1):507-511.
    [17] Wang P F,Wu C F,Guo Y,et al. Experimental and theoretical studies on methylene blue and methyl orange sorption by wheat straw-derived biochar with a large surface area[J]. Physical Chemistry Chemical Physics,2016,18(43):30196-30203.
    [18] Smith K M,Fowler G D,Pullket S,et al. Sewage sludge-based adsorbents:a review of their production,properties and use in water treatment applications[J]. Water Research,2009,43(10):2569-2594.
    [19] Shi S Q,Yang J K,Liang S,et al. Enhanced Cr(Ⅵ)removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2particles[J]. Science of the Total Environment,2018,628-629:499-508.
    [20] Leng L J,Yuan X Z,Huang H J,et al. Characterization and application of bio-chars from liquefaction of microalgae,lignocellulosic biomass and sewage sludge[J]. Fuel Processing Technology,2015,129:8-14.
    [21] Lin L N,Qiu W W,Wang D,et al. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite:Characterization and mechanism[J]. Ecotoxicology and Environmental Safety,2017,144:514-521.
    [22] Lyu H H,Tang J C,Huang Y,et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal,2017,322:516-524.
    [23] Li H,Qiu Y F,Wang X L,et al. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions[J]. Chemosphere,2017,169:534-541.
    [24] Yang S J,Antonietti M,Fechler N. Self-assembly of metal phenolic mesocrystals and morphosynthetic transformation toward hierarchically porous carbons[J]. Journal of the American Chemical Society,2015,137(25):8269-8273.
    [25] Qian Q R,Machida M,Aikawa M,et al. Effect of ZnCl2impregnation ratio on pore structure of activated carbons prepared from cattle manure compost:application of N2adsorptiondesorption isotherms[J]. Journal of Material Cycles and Waste Management,2008,10(1):53-61.
    [26] Cibati A, Foereid B, Bissessur A, et al. Assessment of Miscanthus×giganteus derived biochar as copper and zinc adsorbent:study of the effect of pyrolysis temperature,pH and hydrogen peroxide modification[J]. Journal of Cleaner Production,2017,162:1285-1296.
    [27] Wang P F, Cao M H, Wang C, et al. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite[J]. Applied Surface Science,2014,290:116-124.
    [28] Yao Z Y,Qi J H,Wang L H. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II)onto chestnut shell[J]. Journal of Hazardous Materials,2010,174(1-3):137-143.
    [29] Xia D,Tang F,Zhang C P,et al. ZnCl2-activated biochar from biogas residue facilitates aqueous As(Ⅲ)removal[J]. Applied Surface Science,2016,337:361-369.