基于紫外光谱的C_4F_7N/CO_2混合气体混合比检测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mixing Ratio Detection for C_4F_7N/CO_2 Mixed Gas Based on Ultraviolet Spectroscopy
  • 作者:张晓星 ; 张引 ; 傅明利 ; 李祎 ; 刘畅 ; 卓然
  • 英文作者:ZHANG Xiaoxing;ZHANG Yin;FU Mingli;LI Yi;LIU Chang;ZHUO Ran;School of Electrical Engineering and Automation, Wuhan University;Electrical Power Research Institute,China Southern Power Grid;
  • 关键词:环保绝缘介质 ; C_4F_7N/CO_2 ; 紫外光谱特性 ; 混合比检测 ; 快速分析 ; 在线监测
  • 英文关键词:environmentally friendly insulation medium;;C_4F_7N/CO_2;;UV spectral characteristics;;mixing ratio detection;;rapid analysis;;on-line monitoring
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:武汉大学电气与自动化学院;南方电网科学研究院有限责任公司;
  • 出版日期:2019-02-18 13:56
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.317
  • 基金:中国南方电网重点科技项目(ZBKJXM20170090)~~
  • 语种:中文;
  • 页:GDYJ201904004
  • 页数:6
  • CN:04
  • ISSN:42-1239/TM
  • 分类号:32-37
摘要
C_4F_7N/CO_2混合气体是一种新型环保绝缘介质,具有替代SF_6的潜力,得到了研究人员的广泛关注。C_4F_7N/CO_2混合气体的绝缘性能与其中C_4F_7N占比有着密切关系,因此快速准确地进行混合气体混合比检测具有重要的工程意义。目前尚未有关于混合气体混合比快速检测方法的相关报道。基于紫外光谱技术搭建了C_4F_7N气体分析平台,对C_4F_7N的紫外吸收光谱特性进行了实验分析,获取了C_4F_7N气体在185~210 nm的紫外光谱信息,利用此波段的紫外光谱信息确定了未知混合比气体的反演算法,最终实现了C_4F_7N/CO_2混合气体混合比的快速检测。研究发现C_4F_7N在185~210 nm存在明显的吸收峰;在C_4F_7N/CO_2混合气体常规应用混合比范围内(4%~10%),混合比反演曲线的拟合优度R~2高达0.999 9,混合比反演误差不超过0.88%。相关研究成果为C_4F_7N/CO_2混合气体绝缘设备混合比在线监测提供了优良的解决方案。
        C_4F_7 N/CO_2 mixed gas is a new type of environmentally friendly insulation medium with the potential to replace SF_6 gas, which has received extensive attention from researchers. The insulation performance of C_4F_7 N/CO_2 mixed gas is closely related to the percentage of C_4F_7 N. Therefore, it is of great significance to quickly and accurately detect the percentage of C_4F_7 N in the mixed gas. There is no relevant reports on the method for rapid quantitatively detecting the percentage of C_4F_7 N in mixed gas. Consequently,we built a C_4F_7 N gas analysis platform based on UV spectroscopy, and experimentally analyzed the UV absorption spectrum characteristics of C_4F_7 N. The UV spectral information of C_4F_7 N gas at 185~210 nm was acquired. The inversion algorithm of unknown concentration gas was determined by the spectral information, and the rapid detection of the percentage of C_4F_7 N in C_4F_7 N/CO_2 mixed gas was finally realized. It is found that C_4F_7 N has a distinct absorption peak at 185~210 nm. In the conventional percentage range in C_4F_7 N/CO_2 mixed gas(4%~10%), the R~2 of the mixture ratio inversion curve is as high as 0.999 9, and the mixture ratio inversion error does not exceed 0.88%. The related research results provide an excellent solution for monitoring the mixture ratio of C_4F_7 N in C_4F_7 N/CO_2 mixed gas insulated equipment.
引文
[1]NIEMEYER L,CHU F Y.SF6 and the atmosphere[J].IEEE Transactions on Electrical Insulation,2002,27(1):184-187.
    [2]田双双,张晓星,肖淞,等.工频交流电压下C6F12O与N2混合气体的击穿特性和分解特性[J].中国电机工程学报,2018,38(10):3125-3132,3165.TIAN Shuangshuang,ZHANG Xiaoxing,XIAO Song,et al.Breakdown characteristics and decomposition characteristics of C6F12O and N2mixed gas under AC voltage[J].Proceedings of the CSEE,2018,38(10):3125-3132,3165.
    [3]王小华,傅熊雄,韩国辉,等.C5F10O/CO2混合气体的绝缘性能[J].高电压技术,2017,43(3):715-720.WANG Xiaohua,FU Xiongxiong,HAN Guohui,et al.Insulation performance of C5F10O/CO2 gas mixture[J].High Voltage Engineering,2017,43(3):715-720.
    [4]MATSUI R,CVITKOVITCH D.History of atmospheric SF6 from1973 to 2008[J].Atmospheric Chemistry&Physics,2010,10(21):10305-10320.
    [5]高克利,颜湘莲,王浩,等.环保型气体绝缘输电线路(GIL)技术发展[J].高电压技术,2018,44(10):3105-3113.GAO Keli,YAN Xianglian,WANG Hao,et al.Progress in environment-friendly gas-insulated transmission line(GIL)[J].High Voltage Engineering,2018,44(10):3105-3113.
    [6]周文俊,郑宇,高克利,等.环保型绝缘气体电气特性研究进展[J].高电压技术,2018,44(10):3114-3124.ZHOU Wenjun,ZHENG Yu,GAO Keli,et al.Progress in researching electrical characteristics of environment-friendly insulating gases[J].High Voltage Engineering,2018,44(10):3114-3124.
    [7]NECHMI H E,BEROUAL A,GIRODET A,et al.Fluoronitriles/CO2gas mixture as promising substitute to SF6 for insulation in high voltage applications[J].IEEE Transactions on Dielectrics&Electrical Insulation,2017,23(5):2587-2593.
    [8]KIEFFEL Y,IRWIN T,PONCHON P,et al.Green gas to replace SF6in electrical grids[J].IEEE Power&Energy Magazine,2016,14(2):32-39.
    [9]TU Y,CHENG Y,WANG C,et al.Insulation characteristics of fluoronitriles/CO2 gas mixture under DC electric field[J].IEEETransactions on Dielectrics&Electrical Insulation,2018,25(4):1324-1331.
    [10]WANG C,CHENG Y,TU Y,et al.Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems[J].IEEE Transactions on Dielectrics&Electrical Insulation,2018,25(4):1351-1356.
    [11]ZHANG X,CUI Z,CHENG Z,et al.Quantitative detection of H2Sand CS2 mixed gases based on UV absorption spectrometry[J].Rsc Advances,2017,7(80):50889-50898.
    [12]PLATT U,MEINEN J,POHLERD,et al.Broadband cavity enhanced differential optical absorption spectroscopy(CE-DOAS)-applicability and corrections[J].Atmospheric Measurement Techniques Discussions,2009,2(2):713-723.
    [13]INN E C Y,WATANABE K,ZELIKOFF M.Absorption coefficients of gases in the vacuum ultraviolet.part III.CO2[J].Journal of Chemical Physics,1953,21(10):1648-1650.
    [14]INN E C Y.Vacuum ultraviolet spectroscopy:a review[J].Spectrochimica Acta,1955,7(1):65-87.
    [15]ISHIGURO E,SASANUMA M,MASUKO H,et al.Absorption spectra of H2O and D2O molecules in the vacuum-ultraviolet region[J].Journal of Physics B Atomic&Molecular Physics,1978,11(6):993-1010.
    [16]KIEFFEL Y.Characteristics of g3-an alternative to SF6[C]∥2016IEEE International Conference on Dielectrics(ICD).Montpellier,France:IEEE,2016:880-884.
    [17]KIEFFEL Y,BIQUEZ F.SF6 alternative development for high voltage switchgears[C]∥IEEE Electrical Insulation Conference.Seattle,USA:IEEE,2015:379-383.