无源散射单元电磁散射特性可控方法综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of controllable method of electromagnetic scattering characteristics of passive scattering elements
  • 作者:郭杰 ; 殷红成 ; 满良
  • 英文作者:GUO Jie;YIN Hongcheng;MAN Liang;Beijing Institute of Environmental Features;Science and Technology on Electromagnetic Scattering Laboratory;The Second Academy of China Aerospace Science and Industry Corporation;
  • 关键词:无源 ; 散射单元 ; 电磁散射特性 ; 可控方法 ; 雷达散射截面
  • 英文关键词:passive;;scattering elements;;electromagnetic scattering characteristics;;controllable method;;radar cross section(RCS)
  • 中文刊名:XTYD
  • 英文刊名:Systems Engineering and Electronics
  • 机构:北京环境特性研究所;电磁散射重点实验室;中国航天科工集团有限公司第二研究院;
  • 出版日期:2019-01-25 17:05
  • 出版单位:系统工程与电子技术
  • 年:2019
  • 期:v.41;No.475
  • 基金:国家自然科学基金(61490695)资助课题
  • 语种:中文;
  • 页:XTYD201904003
  • 页数:8
  • CN:04
  • ISSN:11-2422/TN
  • 分类号:21-28
摘要
从雷达目标和环境特性的模拟需求出发,对无源散射单元进行了定义及分类,分析了电磁散射特性可控技术的本质特征,介绍了常用的可控方法,并从外形控制技术、材料控制技术、雷达吸波材料技术、频率选择表面技术以及等离子技术5个方面对电磁散射特性可控方法的国内外现状进行了剖析。结合工程需求,阐述了该领域所面临的问题与挑战,简要展望了发展趋势。
        Aiming at the simulation requirements of radar target and environmental characteristcs,the passive scattering elements are defined and classified.The essential characteristics of the controllable technology of electromagnetic scattering characteristics are analyzed.The commonly used controllable methods are introduced,and the current situation of the controllable methods of electromagnetic scattering characteristics at home and abroad is elaborated from five aspects:shape control technology,material control technology,radar absorbing material technology,frequency selective surface technology and plasma technology.According to the engineering requirement,the problems and challenges faced in this field are analyzed,and the development trend is briefly viewed.
引文
[1]王文斌.海军装备试验靶标技术[M].北京:国防工业出版社,2007:12-18.WANG W B.Naval equipment test target technology[M].Beijing:National Defense Industry Press,2007:12-18.
    [2]房凌晖,郑翔玉,蔡宏图,等.坦克装甲车辆防护技术发展研究[J].四川兵工学报,2014,35(3):23-26.FANG L H,ZHEN X Y,CAI H T,et al.Development of tank&armored vehicle protection technology[J].Journal of Sichuan Ordnance,2014,35(3):23-26.
    [3]顾乃威,王丽伟,苗艳红,等.地面设备伪装隐身评估方法研究[J].导弹与航天运载技术,2016(6):86-89.GU N W,WANG L W,MIAO Y H,et al.Study on camouflage and stealthy capability evaluation of ground support equipments[J].Missile and Space Launch Technology,2016(6):86-89.
    [4]曹淞.全极化探地雷达正演模拟及典型目标体在砂层中的极化校准[D].吉林:吉林大学,2016.CAO S.Forward modeling of fully polarized ground penetrating radar and polarization calibration of typical target body in sand layer[D].Jilin:Jilin University,2016.
    [5]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998:254-285.RUAN Y Z.Radar cross section and stealth technology[M].Beijing:National Defense Industry Press,1998:254-285.
    [6]胡传炘.隐身涂层技术[M].北京:化学工业出版社,2004:185-193.HU C X.Stealth coating technology[M].Beijing:Chemical Industry Press,2004:185-193.
    [7]陈静.雷达无源干扰原理[M].北京:国防工业出版社,2009:48-51.CHEN J.Principle of radar passive jamming[M].Beijing:National Defense Industry Press,2009:48-51.
    [8]黄培康.雷达目标特征信号[M].北京:中国宇航出版社,1993:74-75.HUANG P K.Radar target characteristic signal[M].Beijing:China Astronautic Publishing House,1993:74-75.
    [9]YANG Y,QUAN S.Planar tentacle-shaped UWB band-notched antenna with reduced RCS[C]∥Proc.of the IEEE International Conference on Microwave&Millimeter Wave Technology,2016:283-285.
    [10]DIKMEN C M,CIMEN S,CAKIR G.Planar octagonal-shaped UWB antenna with reduced radar cross section[J].IEEETrans.on Antennas&Propagation,2014,62(6):2946-2953.
    [11]DALLMANN T,HEBERLING D.A semi-analytical expression for the RCS of a frustum-shaped foam target support structure[C]∥Proc.of the European Conference on Antennas&Propagation,2015:1-5.
    [12]POLIVKA M,MACHAC J.Improvement of backscatter properties of C-shaped dipole scatterer for chipless RFID[C]∥Proc.of the Microwave Conference,2015:962-964.
    [13]KANDASAMY K,MUJUMDER B,MUKHERJEE J,et al.Low RCS and polarization reconfigurable antenna using cross slot based metasurface[J].IEEE Antennas and Wireless Propagation Letters,2015,14:1-1.
    [14]JAMRO D A,HONG J,BAH M H,et al.Design of monopole antenna for RCS reduction applications[C]∥Proc.of the IEEEInternational Conference on Communication Software&Networks,2015:156-159.
    [15]宋招枘,赵敬超,张华.军用直升机隐身特性分析研究[J].科技创新与应用,2018(5):1-4.SONG Z R,ZAHO J C,ZHANG H.Analysis and research on stealth characteristics of military helicopte[J].Technology Innovation and Application,2018(5):1-4.
    [16]郑日升,戚开南,张庆兵,等.“X”型布局锯齿唇口进气道的超声速飞行器气动与隐身一体化研究[J].推进技术,2017,38(11):2471-2478.ZHENG R S,QI K N,ZHANG Q B,et al.Integrated investigation of aerodynamic shape and stealth performance for supersonic vehicle with“X”sawtooth lip inlet[J].Journal of Propulsion Technology,2017,38(11):2471-2478.
    [17]侯雪剑,刘昊雨,张云飞.直升机武器外挂的隐身设计与RCS计算[J].直升机技术,2017(3):10-14.HOU X J,LIU H Y,ZHANG Y F.Stealth design and RCScalculation for helicopter external weapon stores[J].Helicopter Technique,2017(3):10-14.
    [18]苏抗.微小卫星低可观测关键技术研究[D].南京:南京航空航天大学,2011.SU K.Research on key technologies of low observability for micro satellites[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.
    [19]刘战合,王菁,姬金祖.典型布局飞机电磁散射特性数值计算研究[J].航空工程进展,2018,9(3):341-347.LIU Z H,WANG J,JI J Z.Study on numerical calculation of electromagnetic scattering characteristics of typical aircraft[J].Advances in Aeronautical Engineering,2018,9(3):341-347.
    [20]刘国富,王和平,聂璐,等.锐边高超声速再入飞行器气动隐身综合设计[J].上海航天,2016,33(2):100-105.LIU G H,WANG H P,NIE L,et al.Comprehensive aerodynamic stealth design of sharp-edged hypersonic reentry vehicle[J].Shanghai Aerospace,2016,33(2):100-105.
    [21]RHYS T L A.The design of radially symmetric lenses[J].IEEETrans.on Antennas&Propagation,1970,18(4):497-506.
    [22]SEBASTIEN R,MOHAMED H,SORIEUX J.A sliced spherical Luneburg lens[J].IEEE Antennas&Wireless Propagation Letters,2003(2):163-166.
    [23]STRICKLAND P C.Method for fabricating luneburg lenses[P].US:6721103B1,2004.4.
    [24]CARPENTER M P,OSWARD M M,GIBBS D A.Lens of gradient dielectric constant and methods of production[P].US:6433936B1,2002.5.
    [25]TEBER A,UNVER I,KAVAS H,et al.Knitted radar absorbing materials(RAM)based on nickel-cobalt magnetic materials[J].Journal of Magnetism&Magnetic Materials,2016,406:228-232.
    [26]LAIS V D S,PEZZIN S H,CERQUEIRA R M,et al.Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials[J].Polymer Composites,2016,37(8):2277-2284.
    [27]SMITHA P,SINGH I,NAJIM M,et al.Development of thin broad band radar absorbing materials using nanostructured spinel ferrites[J].Journal of Materials Science Materials in Electronics,2016,27(8):7731-7737.
    [28]NAJIM M,SMITHA P,AGARWALA V,et al.Development of FSS printed on multi-layered iron-zinc oxide composite coatings for microwave absorption[C]∥Proc.of the Recent Advances in Electronics&Computer Engineering,2016:192-195.
    [29]NAJIM M,SMITHA P,AGARWALA V,et al.Development of thin dual-layer alumina-iron composite coatings for enhanced microwave absorption[C]∥Proc.of the IEEE International Conference on Industrial&Information Systems,2016:18-20.
    [30]NAJIM M,PUTHUCHERI S,AGARWALA V,et al.ANN-Based two-layer absorber design using Fe-Al hybrid nano-composites for broad bandwidth microwave absorption[J].IEEE Trans.on Magnetics,2016,52(12):1-8.
    [31]PAKHALE S,PUTHUCHERI S,SINGH D,et al.Electromagnetic wave absorption properties of conducting polymerspinel ferrite composites[C]∥Proc.of the National Conference on Recent Advances in Electronics&Computer Engineering,2016:134-137.
    [32]PANWAR R,PUTHUCHERI S,SINGH A,et al.Critical analysis of fractal FSS with heterogeneous composite to enhance microwave absorption for stealth application[C]∥Proc.of the Mtt-s International Microwave&RF Conference,2016:416-418.
    [33]李程,招启军,陈炀,等.共轴旋翼高速直升机雷达散射截面计算及雷达吸波材料影响分析[J].南京航空航天大学学报,2017,49(2):147-153.LI C,ZHAO Q J,CHEN Y,et al.Radar cross section calculation on coaxial rotor high-speed helicopter and effect analyses of radar absorbing material[J].Journal of Nanjing University of Aeronautics&Astronautics,2017,49(2):147-153.
    [34]吕洁.准八木天线的雷达截面减缩技术研究[D].西安:西安电子科技大学,2014.LV J.Research on radar cross section reduction technology of quasi-yagi antenna[D].Xian:Xidian University,2014.
    [35]柳汀.隐身飞行器表面缝隙RCS的仿真分析[J].吉林化工学院学报,2016,33(5):59-62.LIU T.Simulation analysis on RCS of slits on stealth aircraft[J].Journal of Jilin Institute of Chemical Technology,2016,33(5):59-62.
    [36]NARAYAN S,SANGEETHA B,SRUTHI T V,et al.Design of low observable antenna using active hybrid-element FSSstructure for stealth applications[J].AEU-International Journal of Electronics and Communications,2017,80:137-143.
    [37]BODUR H,CIMEN S,CAKIR G.A novel reflecarray antenna backed with double layer FSS for RCS reduction[C]∥Proc.of the Applied Computational Electromagnetics Society Symposium,2017:1-2.
    [38]BASKEY H B,GHAI B,AKHTAR M J.A flexible,ultra thin,frequency-selective-surface based absorber film for the radar cross section reduction of a cubical object[C]∥Proc.of the International Microwave&RF Conference,2016:128-131.
    [39]THUMMALURU S R,KUMAR R,CHAUDHARY R K.Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface[J].IEEETrans.on Antennas&Propagation,2018,66(3):1595-1600.
    [40]BASKEY H B,AKHTAR M J.Design of flexible hybrid nanocomposite structure based on frequency selective surface for wideband radar cross section reduction[J].IEEE Trans.on Microwave Theory&Techniques,2017,65(6):2019-2029.
    [41]MAHIMA P,SANGEETHA B,NARAYAN S,et al.EM design of hybrid-element FSS structure for radome application[C]∥Proc.of the India Conference,2016:1-4.
    [42]SAMADI F,AKBARI M,CHAHARMIR M R,et al.Wideband RCS suppression based on FSS structures for millimeter applications[C]∥Proc.of the 32nd General Assembly and Scientific Symposium of the International Union of Radio Science,2017:1-3.
    [43]PAZOKIAN M,KOMJANI N,KARIMIPOUR M.Broadband RCS reduction of microstrip antenna using coding frequency selective surface[J].IEEE Antennas&Wireless Propagation Letters,2018,(99):1-4.
    [44]MACHADO G G,CAHILL R,MELO M T D.A low radar cross section dipole antenna simulation[C]∥Proc.of the International Microwave and Optoelectronics Conference,2015:1-5.
    [45]夏少旭.Koch分形结构活性碳纤维电路屏复合材料的研制及其吸波性能研究[D].上海:东华大学,2016.XIA S X.Development of koch fractal structure activated carbon fiber circuit screen composite and its microwave absorbing property[D].Shanghai:Donghua University,2016.
    [46]杨晨晨,孟凡伟,焦金龙.基于Altair FEKO的有源频率选择表面隐身天线罩RCS研究[J].微波学报,2016,32(S1):116-119.YANG C C,MENG F W,JIAO J L.RCS research of active frequency selective surface stealth radome based on altair FEKO[J].Journal of Microwaves,2016,32(S1):116-119.
    [47]徐一骊.石墨烯的电磁特性及其无源元件研究[D].浙江:浙江大学,2016.XU Y L.Study on electromagnetic characteristics of graphene and its passive components[D].Zhejiang:Zhejiang University,2016.
    [48]姚佩.基于棋盘状人工磁导体阵列的微带天线散射性能改善[D].太原:中北大学,2018.YAO P.Scattering performance improvement of microstrip antenna based on chessboard artificial magnetic conductor array[D].Taiyuan:North University of China,2018.
    [49]鄢学全,任嘉莹,张德生,等.天线频选罩的隐身特性研究[J].电波科学学报,2018,33(2):126-131.YAN X Q,REN J Y,ZHANG D S,et al.Study on stealth characteristics of antenna frequency radome[J].Journal of Radio Science,2018,33(2):126-131.
    [50]张青春,杨明武,姜兆能.一种超宽带低雷达散射截面天线的设计与研究[J].微电子技术,2018,44(6):27-30.ZHANG Q C,YANG M W,JIANG Z N.Design and research of an ultra-wideband metal antenna with low radar cross section[J].Microelectronic Technology,2018,44(6):27-30.
    [51]MARSHALL R A,BROWN P,CLOSE S.Plasma distributions in meteor head echoes and implications for radar cross section interpretation[J].Planetary&Space Science,2017,143:203-208.
    [52]DIMANT Y S.Formation of dense plasma around a small meteoroid:kinetic theory and its implications[C]∥Proc.of the AGU Fall Meeting Abstracts,2016,abstract id.P31B-2094.
    [53]GHAYEKHLOO A,AFSAHI M,OROUJI A A.Checkerboard plasma electromagnetic surface for wideband and wideangle bistatic radar cross section reduction[J].IEEE Trans.on Plasma Science,2017,45(4):603-609.
    [54]KIM Y,JUNG I,YOOK J G,et al.Numerical investigation of3-D radar cross section of dielectric barrier discharge plasma[C]∥Proc.of the Microwave Conference,2016:1-3.
    [55]AREND M,CASTRO F C D,MULLER C,et al.Toroidal plasma lens antenna[J].IEEE Antennas&Wireless Propagation Letters,2017,16(99):1155-1158.
    [56]莫锦军.隐身目标低频宽带电磁散射特性研究[D].长沙:国防科学技术大学,2004.MO J J.Study on low frequency broadband electromagnetic scattering characteristics of stealth targets[D].Changsha:National University of Defense Technology,2004.
    [57]刘少斌.等离子体覆盖目标的电磁特性及其在隐身技术中的应用[D].长沙:国防科学技术大学,2004.LIU S B.Electromagnetic characteristics of target covered by plasma and its application in stealth technology[D].Changsha:National University of Defense Technology,2004.
    [58]沈海军,李宏信,刘毅.等离子体隐身结构机翼的RCS分析[J].飞机设计,2011,31(1):1-4.SHEN H J,LI H X,LIU Y.RCS analysis of airfoils with plasma stealth structure[J].Aircraft Design,2011,31(1):1-4.
    [59]王志军.电磁波与等离子体鞘套作用的非线性效应的研究[D].西安:西安电子科技大学,2017.WANG Z J.Study on nonlinear effect of electromagnetic wave interacting with plasma sheath[D].Xian:Xidian University,2017.
    [60]张磊,刘硕,崔铁军.电磁编码超材料的理论与应用[J].中国光学,2017,10(1):1-12.ZHANG L,LIU S,CUI T J.Theory and application of coding metamaterials[J].Chinese Journal of Optics,2017,10(1):1-12.
    [61]张学迁,张慧芳,田震,等.利用介质超材料控制太赫兹波的振幅和相位[J].红外与激光工程,2016,45(4):68-73.ZHANG X Q,ZHANG H F,TIAN Z,et al.Simultaneous control of terahertz amplitude and phase with dielectric metamaterials[J].Infrared and Laser Engineering,2016,45(4):68-73.
    [62]韩江枫,曹祥玉,高军,等.一种基于超材料的宽带、反射型90°极化旋转体设计[J].物理学报,2016,65(4):75-82.HAN J F,CAO X Y,GAO J,et al.Design of broadband reflective 90°polarization rotator based on metamaterial[J].Acta Physica Sinica,2016,65(4):75-82.
    [63]李顺利,曾文波,陈应辉.基于左手材料的超宽带平面天线的设计[J].压电与声光,2017,39(4):638-642.LI S L,ZENG W B,CHEN Y H.Design of ultra wide band planar antenna based on left handed material[J].Piezoelectrics&Acoustooptics,2017,39(4):638-642.
    [64]吴良威,张正平.基于多开口田字形宽频带低损耗左手材料[J].物理学报,2016,65(16):1-6.WU L W,ZHANG Z P.Broadband and low-loss left-handed materials based on multi-opening cross shape structures[J].Acta Physica Sinica,2016,65(16):1-6.
    [65]何政蕊,耿友林.一种新型宽频带低损耗小单元左手材料的设计与实现[J].物理学报,2016,65(9):094101-0-094101-6.HE Z R,GENG Y L.Design and analysis of a new typ e of wideband low-loss and small size left-handed materials[J].Acta Physica Sinica,2016,65(9):094101-0-094101-6.
    [66]AKBARI M,SEBAK A R.Broadband RCS reduction based on AMC technology for MMW applications[C]∥Proc.of the Antennas&Propagation,2017:259-260.
    [67]ESMAELI S H,SEDIGHY S H.Wideband radar cross-section reduction by AMC[J].Electronics Letters,2016,52(1):70-71.
    [68]ZHANG Y Q,WANG G M,XU H X.Ultra-wideband RCSreduction using novel configured chessboard metasurface[J].Chinese Physics B,2017,26(5):113-119.
    [69]侯明月,李昂,邹威,等.氨基改性碳纳米管的制备及对聚氨酯泡沫材料的影响[J].高分子材料科学与工程,2016,32(1):179-183.HOU M Y,LI A,ZOU W,et al.Effect of amino-modified carbon nanotubes on the pore structure of polyurethane foams[J].Polymer Materials Science&Engineering,2016,32(1):179-183.
    [70]BAKER C O,HUANG X,NELSON W,et al.Polyaniline nanofibers:broadening applications for conducting polymers[J].Chemical Society Reviews,2017,46(5):1510-1525.
    [71]KANG K,WATANABE S,BROCH K.2Dcoherent charge transport in highly ordered conducting polymers doped by solid state diffusion[J].Nature Materials,2016,15(8):896-902.
    [72]ZOGRAFOPOULOS D C,PROKOPIDIS K P,FERRARO A,et al.Numerical and experimental time-domain characterization of terahertz conducting polymers[J].IEEE Photonics Technology Letters,2018,30(17):1579-1582.
    [73]WANG G,MORRIN A,LI M,et al.Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors[J].Journal of Materials Chemistry B,2018,6(25):4173-4190.
    [74]IQBAL S,AHMAD S.Recent development in hybrid conducting polymers:synthesis,applications and future prospects[J].Journal of Industrial&Engineering Chemistry,2018(60):53-84.
    [75]CHAUHAN A K,GUPTA S K,TAGUCHI D,et al.Enhancement of the carrier mobility of conducting polymers by formation of their graphene composites[J].RSC Advances,2017,7(20):11913-11920.
    [76]SALAS R.3Dprinting for the rapid prototyping of structural electronics[J].IEEE Access,2014(2):234-242.
    [77]TORABI K,FARJOOD E,HAMEDANI S.Rapid prototyping technologies and their applications in prosthodontics,a review of literature[J].Journal of Dentistry,2015,16(1):1-9.
    [78]GBELE K,MIN L,NG W R,et al.Millimeter wave luneburg lens antenna fabricated by polymer jetting rapid prototyping[C]∥Proc.of the International Conference on Infrared,Millimeter,and Terahertz Waves,2015.
    [79]赵圆圆,郑美玲,段宣明.飞秒激光微纳3D打印新进展---首次实现微尺度光波段3DLuneburg透镜[J].物理,2016,45(11):729-731.ZHAO Y Y,ZHENG M L,DUAN X M.New development of femtosecond laser micro-nano 3Dprinting---first realization of micro-scale optical band 3D Luneburg lens[J].Physics,2016,45(11):729-731.
    [80]田小永,吴玲玲,殷鸣,等.宽频大角度新型龙勃透镜设计与快速制造[J].机械工程学报,2016,52(21):175-181.TIAN X Y,WU L L,YIN M,et al.Design and rapid fabrication of broadband wide-angle flattened luneburg lens[J].Journal of Mechanical Engineering,2016,52(21):175-181.
    [81]史绍蕊,吴昱明,于浩,等.一种新型Ku波段龙伯透镜反射器[J].微波学报,2015,31(5):73-76.SHI S R,WU Y M,YU H,et al.A compact Ku-band Luneburg lens reflector based on metamaterial structures[J].Journal of Microwaves,2015,31(5):73-76.