饱和D-最优设计在高蛋白大豆施肥优化中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of saturated D-optimal design for optimum fertilization in the production of high protein soybean
  • 作者:田艺心 ; 高凤菊 ; 曹鹏鹏
  • 英文作者:TIAN Yi-xin;GAO Feng-ju;CAO Peng-peng;Dezhou Academy of Agricultural Sciences;
  • 关键词:高蛋白大豆 ; 饱和D-最优设计 ; 施肥 ; 产量 ; 蛋白质含量
  • 英文关键词:high-protein soybean;;saturated D-optimal design;;fertilization;;yield;;protein content
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:德州市农业科学研究院;
  • 出版日期:2019-02-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.125
  • 基金:山东省重点研发计划(重大关键技术)项目(2016ZDJS10A03);; 山东省现代农业产业技术体系杂粮创新团队建设项目(SDAIT-5-01)资助
  • 语种:中文;
  • 页:ZWYF201902019
  • 页数:8
  • CN:02
  • ISSN:11-3996/S
  • 分类号:181-188
摘要
【目的】高蛋白大豆生产是我国农业供给侧改革发展的一个重点产业,合理施肥是实现高蛋白大豆生产的一个必要环节。利用饱和D-最优设计对黄淮海地区高蛋白大豆氮、磷、钾肥施用量进行研究,旨在为高蛋白大豆生产中的肥料配施提供理论依据和参考。【方法】以高蛋白大豆冀豆21为试验材料,采用氮、磷、钾三因素二次饱和D-最优设计,每个因素分别设10个处理,每个处理3次重复,共计30个小区,随机区组排列。各处理肥料均在大豆开花期分批次施用,成熟后测定大豆产量及籽粒蛋白质含量。【结果】建立了以氮、磷、钾施用量编码值为变量因子,高蛋白大豆产量和蛋白质含量为目标函数的三元二次多项式数学模式。通过对模型解析寻优表明,氮、磷、钾肥对高蛋白大豆和蛋白质含量均有显著影响,且氮肥>钾肥>磷肥;当氮、磷、钾肥用量分别为95.46、183.8和128.7 kg/hm~2时,边际产量效应值为0,当氮、磷、钾肥分别为120.8、178.4和141.3 kg/hm~2时,边际蛋白质含量效应值为0。氮磷、氮钾、磷钾对高蛋白大豆产量和蛋白质含量存在明显的交互作用。本试验条件下,大豆产量超过3104 kg/hm~2,籽粒蛋白质含量46.04%以上的施肥方案为施氮量76.13~101.1 kg/hm~2,施磷量131.1~168.5 kg/hm~2,施钾量104.9~134.8 kg/hm~2。【结论】利用饱和D建立的肥料函数模型可以很好的说明氮、磷、钾施肥与大豆产量、蛋白质含量的连续变化关系和氮、磷、钾间的互作效应,适量的氮肥、磷肥、钾肥可有效提高高蛋白大豆产量和蛋白质含量。供试条件下,最佳肥料配比是N76.1~101.1 kg/hm~2、P 131.1~168.5 kg/hm~2、K 104.9~134.8 kg/hm~2。
        【Objectives】The production of high protein soybean is an important industry in the supply-side reform in modern agriculture system. Optimal fertilization plays a vital role in the efficient production of high protein soybean. The saturated D-optimum design method was attempted in the fertilization management in highprotein soybean production in Huang-Huai-Hai region.【Methods】A field experiment was conducted using a high-protein soybean cultivar of Jidou21 as the tested crop. Fertilizers of nitrogen, phosphate and potassium were designed using the two factors' saturating D-optimal design. Each factor included 10 levels and with three replicates. The total of 30 experimental plots were randomly arranged. All fertilizers were applied in batches at the flowering stage of soybean. Both the soybean yield and protein contents were determined at the maturity stage.【Results】Using the obtained data, a ternary quadratic polynomial mathematical model was established,with the applied amounts of N, P and K as independent variables, and the soybean yield and protein content as the target functions. The analysis of model showed that application of N, P, and K significantly influenced soybean yield and protein content, and N exhibited better effect than K and P did. When the levels of N, P and K reached95.46, 183.8 and 128.7 kg/hm~2, the marginal yield effect became zero; When the levels of N, P and K reached120.8, 178.4 and 141.3 kg/hm~2, the marginal protein effect became zero. There were interactions among the N, P and K rates and the yield and protein content of soybean. Under the experimental conditions, to obtain above 3104 kg/hm~2 of soybean yield with more than 46%of protein content, the optimum fertilization rate was N 76.1-101.1 kg/hm~2, P 131.1-168.5 kg/hm~2 and K 104.9-134.8 kg/hm~2.【Conclusions】The fertilizer function model established using the saturated-D method is satisfactory in clearly expressing the continue change of the relationship between the NPK fertilization and the yields and protein contents of soybean, and the interaction of the three fertilizers. Suitable rates of NPK fertilizers are effectively in improving the yield and protein content of the tested soybean cultivar. The optimal rate of fertilizers is N 76.1-101.1 kg/hm~2, P 131.1-168.5 kg/hm~2 and K104.9-134.8 kg/hm~2 for the soybean cultivar in the experimental area.
引文
[1]殷瑞锋,徐雪高,冯学静.2016年以来大豆市场分析与后市展望[J].市场预测,2017, 9(6):11-16.Yin R F, Xu X G, Feng X J. Soybean market since 2016 and its future prospect[J]. Market Forecasting, 2017, 9(6):11-16.
    [2]Ainsworth E A, Yendrek C R, Skoneczka J A, et al. Accelerating yield potential in soybean:potential targets for biotechnological improvement[J]. Plant Cell&Environment, 2012, 35(1):38-52.
    [3]白由路.植物营养与肥料研究的回顾与展望[J].中国农业科学,2015, 48(17):3477-3492.Bai Y L. Review on research in plant nutrition and fertilizers[J].Scientia Acricultura Sinica,2015, 48(17):3477-3492.
    [4] Sebilo M, Mayer B, Nicolardot B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2013,110(45):18185-18189.
    [5]王火焰,周健民.肥料养分真实利用率计算与施肥策略[J].土壤学报,2014, 51(2):216-225.Wang H Y, Zhou J M. Calculation of real fertilizer use efficiency and discussion on fertilization strategies[J]. Acta Pedologica Sinica, 2014,51(2):216-225.
    [6]谌俊旭,黄山,范元芳,等.单作套作大豆叶片氮素积累与光谱特征[J].作物学报,2017, 43(12):1835-1844.Shen J X, Huang S, Fan Y F,et al. Remote detection of canopy leaf nitrogen status in soybean by hyper spectral data under monoculture and intercropping systems[J]. Acta Agronomica Sinica, 2017, 43(12):1835-1844.
    [7]宋柏权.不同基因型大豆产质量形成及其氮素调控[D].哈尔滨:东北农业大学博士学位论文,2009.Song B Q. Differences between yield and quality of different genotypes soybean and its adjustment of nitrogen[D]. Harbin:PhD Dissertation of Northeast Agricultural University, 2009.
    [8]夏玄,龚振平.氮素与豆科作物固氮关系研究进展[J].东北农业大学学报,2017, 48(1):79-88.Xia X, Gong Z P. Research advance on the relationship between nitrogen and leguminous nitrogen fixation[J]. Journal of Northeast Agricultural University, 2017, 48(1):79-88.
    [9]姜妍,王浩,王绍东,等.不同氮素水平对7S亚基缺失大豆品质及相关性状的影响[J].核农学报,2017, 31(3):574-579.Jiang Y, Wang H, Wang S D, et al. Effect of different nitrogen level to quality characteristics and other related traits in the 7S subunit deficient soybean[J]. Journal of Nuclear Agricultural Sciences, 2017,31(3):574-579.
    [10]尹元萍,董文汉,王明君,等.2种磷水平下大豆种质资源品质性状的遗传差异分析[J].西南农业学报,2017, 30(10):2185-2190.Yin Y P, Dong W H, Wang M J, et al. Analysis of genetic variationof soybean germplasm resources under two phosphorus levels[J].Southwest China Journal of Agricultural Sciences, 2017, 30(10):2185-2190.
    [11]钟鹏,刘杰,王建丽.不同磷效,率基因型大豆产量的构成因素及籽粒产量通径[J].农业工程,2016,6(2):110-115.Zhong P, Liu J, Wang J L. Yield component factors and grain yield path of genotype soybean with different phosphorus efficiency[J].Agricultural Engineering, 2016, 6(2):110-115.
    [12]朱晓玲,陈海峰,王程,等.大豆钾转运体基因GmKT12的克隆和信息学分析[J].作物学报,2013, 39(9):1701-1709.Zhu X L, Chen H F, Wang C, et al. Molecular cloning and bioinformatics analysis of K+transporter gene(GmKT12)from soybean(Glycine max L. Merri)[J]. Acta Agronomica Sinica, 2013,39(9):1701-1709.
    [13] Parvej M R, Williams A S, Holshouser D L, et al. Double-crop soybean response to potassium on mid-atlantic coastal plain and piedmont soils[J]. Agronomy Journal, 2018, 110(1):399-410.
    [14] Carmona M A, Sautua F J, Grijalba P E, et al. Effect of potassium and manganese phosphates in the control of Pythium damping-off in soybean:a feasible alternative to fungicide seed treatments[J]. Pest Management Science, 2018, 74(2):366-374.
    [15]王海艳.优化施肥对大豆氮磷钾吸收与分配的影响[D].哈尔滨:东北农业大学硕士学位论文,2011.Wang H Y. Effects of optimized fertilization on NPK uptake and distribution of soybean[D]. Harbin:MS Thesis of Northeast Agricultural University, 2011.
    [16] Wei Y, Yuting G, Xiaochun W, et al. Temporal variations of soil microbial community under compost addition in black soil of Northeast China[J]. Applied Soil Ecology, 2017, 121(12):214-222.
    [17]刘伟明.二次饱和D-最优设计在甘薯栽培试验中的应用[J].安徽农业科学,2011,39(35):21625-21626, 21633.Liu W M. Application of the secondary saturation and D-optimal design in the experiment in sweet potato cultivation[J]. Journal of Anhui Agricultural Science, 2011, 39(35):21625-21626, 21633.
    [18]董英,陈立,付西光.饱和D最优设计在青椒干燥试验中的应用[J].农业机械学报,2002, 33(3):70-73.Dong Y, Chen L, Fu X G. Study on D-saturating optimum design for sweet pepper drying[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(3):70-73.
    [19]石云平,杨美纯,李锋.饱和D-最优设计在龙牙百合小鳞茎诱导中的应用[J].广西农业科学,2009, 40(12):1519-1523.Shi Y P, Yang M C, Li F. Application of saturation D-optimum design for induction of Lilium brownii var viridulum bulblet derived from squamule of bulb[J]. Journal of Guangxi Agricultural, 2009,40(12):1519-1523.
    [20]滕云,郭亚芬,张忠学,等.东北半干旱区大豆水肥耦合模式试验研究[J].东北农业大学学报,2005, 36(4):639-644.Teng Y, Guo Y F, Zhang Z X, et al. Study on couple effect of water and fertilizer of soybean in northeast semiarid area[J]. Journal of Northeast Agricultural University, 2005, 36(4):639-644.
    [21] Zhu X M, Han B J. Root water uptake and root nitrogen mass distributions of soybean under different nitrogen and water supply[J].Interaction Journal of Agriculture and Biology, 2018, 20(1):52-56.
    [22] Barbosa N C, Pereira H S, Arruda E M, et al. Spatial distribution of phosphorus in the soil and soybean yield as function of fertilization methods[J]. Bioscience Journal, 2018, 34(1):88-94.
    [23]孙振宁,李晶,段兴武,等.氮磷钾施肥水平对大豆产量及性状的影响[J].作物杂志,2012, 5(35):135-143.Sun Z N, Li J, Duan X W, et al. Effects of combined fertilization of N, P and K on soybean yield and yield traits[J]. Crops, 2012, 5(35):135-143.
    [24]吴书平,马永学,纪永民.氮磷钾优化施肥对夏大豆产量的影响[J].大豆科技,2008, 2(11):36-38.Wu S P, Ma Y X, Ji Y M. Effect of optimal fertilization of N, P and K on summer soybean yield[J]. Soybean Science&Technology,2008, 2(11):36-38.
    [25]纪永民,张存岭,曹杰.氮磷钾追施对夏大豆产量的影响[J].磷肥与复肥,2012, 27(2):74-77.Ji Y M, Zhang C L, Cao J. The effect of dressing NPK on the yield ofsummer soybean[J]. Phosphate&Compound Fertilizer, 2012, 27(2):74-77.
    [26]陈峰,张开文,刘波,等.氮磷钾配施对大豆产量的影响[J].大豆科技,2011,3(11):18-22.Chen F, Zhang K W, Liu B, et al. Effect of different proportion of N,P,K on soybean yield[J]. Soybean Science&Technology,2011,3(11):18-22.
    [27] Xiao Z, Jiang W, Yu H, et al. Substrate water content and nitrogen interactions in growing media:yield, fruit quality, water consumption and water use efficiency on tomato[J]. International Symposium on Soilless Culture and Hydroponics, 2009, 843(6):57-64.
    [28]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2002.344-347.Ren L Q. Experimental optimization design and analysis[M]. Beijing:High Education Press, 2002. 344-347.