秸秆还田配施复合肥对茉莉园温室气体排放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of straw returning combined with compound fertilizer on greenhouse gas emission from Jasmine Garden
  • 作者:金强 ; 陈思聪 ; 陈优阳 ; 陈晓旋 ; 刘旭阳 ; 王维奇
  • 英文作者:JIN Qiang;CHEN Sicong;CHEN Youyang;CHEN Xiaoxuan;LIU Xuyang;WANG Weiqi;Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education,Fujian Normal University;Institute of Geography,Fujian Normal University;Agriculture Bureau of Fuzhou City;
  • 关键词:温室气体 ; 排放 ; 秸秆 ; 复合肥 ; 茉莉园
  • 英文关键词:greenhouse gas;;emission;;straw;;compound fertilizer;;jasmine garden
  • 中文刊名:GZZZ
  • 英文刊名:Subtropical Agriculture Research
  • 机构:福建师范大学湿润亚热带生态地理过程教育部重点实验室;福建师范大学地理研究所;福州市农业局;
  • 出版日期:2018-08-25
  • 出版单位:亚热带农业研究
  • 年:2018
  • 期:v.14
  • 基金:国家自然科学基金(41571287,31000209);; 福建省高校杰出青年科研人才培育计划(2017);; 福州市科技计划(2016-N-86)资助项目
  • 语种:中文;
  • 页:GZZZ201803009
  • 页数:10
  • CN:03
  • ISSN:35-1279/S
  • 分类号:43-52
摘要
为了阐明秸秆还田配施复合肥对温室气体排放的影响,采用静态箱—气相色谱法,对福州茉莉园秸秆与复合肥配施处理下温室气体排放及其影响因子进行了测定与分析。结果表明:秸秆还田条件下,对照(CK)、减半、正常、倍增施肥量处理CO2排放通量均值分别为(331.58±15.65)、(375.22±71.98)、(397.53±59.42)、(642.01±72.79) mg·m-2·h-1,CO2排放通量与土壤温度极显著正相关(P<0.01),与pH、总铁、Fe3+极显著负相关(P<0.01); CK、减半、正常、倍增施肥量处理CH4排放通量均值分别为(56.18±17.09)、(33.58±14.42)、(67.86±16.26)、(14.16±4.21)μg·m-2·h-1,CK处理CH4排放通量与土壤温度呈极显著负相关(P<0.01); CK、减半、正常、倍增施肥量处理N2O排放通量均值分别为(28.95±4.10)、(4.71±1.28)、(29.50±1.30)、(6.12±1.27)μg·m-2·h-1,N2O排放通量与土壤温度呈极显著正相关(P<0.01),与pH、总铁呈极显著负相关(P<0.01)。与CK相比,减半处理降低了CH4和N2O排放通量。CK处理的综合温室效应低于其他配施复合肥处理。
        In order to clarify the effects of mixed application of straw returning and compound fertilizer on greenhouse gas emissions,the greenhouse gas emission and its influencing factors under straw returning combined with different dose compound fertilizers were measured by static chamber-gas chromatography analysis in Fuzhou Jasmine Garden. The results showed that the mean CO2 emission fluxes of the control(only straw),halving(straw+half amount of compound fertilizer),normal(straw+standard amount of compound fertilizer) and double(straw + double amount of compound fertilizer) groups were(331. 58 ± 15. 65),(375.22 ± 71. 98),(397.53±59.42),and(642.01±72.79) mg·m-2·h-1,respectively. The CO2 emission flux was significantly positively correlated with soil temperature(P<0.01),but significantly negatively correlated with pH,total iron,and Fe3+(P<0.01). The mean CH4 emission fluxes of the control,halving,normal,and double groups were(56.18± 17.09),(33.58± 14.42),(67.86± 16.26),and(14.16±4.21) μg·m-2·h-1,respectively. The CH4 emission flux of the control treatment was significantly negatively correlated with soil temperature(P<0.01). The mean N2 O emission fluxes of the control,halving,normal,and doubled groups were(28.95±4.10),(4.71±1.28),(29.50±1.30),and(6.12± 1.27) μg·m-2·h-1,respectively. The N2 O flux was significantly positively correlated with soil temperature(P<0.01),but was significantly negatively correlated with soil pH and total iron(P<0.01). Compared to the control treatment,the halving mixed treatment reduced the CH4 and N2 O gas emission fluxes. The comprehensive greenhouse gas emission effect of the single straw returning(control) application was lower than that of other doses of compound fertilizer.
引文
[1]张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报,2011,19(4):966-975.
    [2]马秀梅,朱波,杜泽林,等.冬水田休闲期温室气体排放通量的研究[J].农业环境科学学报,2005,24(6):1 199-1 202.
    [3]MYHRE G,SHINDELL D,BRON F M,et al. Anthropogenic and natural radiative forcing[M]//STOCKER T F,QIN D,PLATTNER G K,et al. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York:Cambridge University Press,Cambridge,2013,465-570.
    [4]陈雪双,刘娟,姜培坤,等.施肥对山核桃林地土壤N2O排放的影响[J].植物营养与肥料学报,2014,20(5):1 262-1 270.
    [5]HTSCH B W. Methane oxidation in non-flooded soils as affected by crop production-invited paper[J]. European Journal of Agronomy,2001,14(4):237-260.
    [6]LINQUIST B A,LIU L J,KESSEL C V,et al. Enhanced efficiency nitrogen fertilizers for rice systems:meta-analysis of yield and nitrogen uptake[J]. Field Crops Research,2013,154:246-254.
    [7]王自群.浅论土壤肥料与农业可持续发展[J].农业与技术,2018,38(15):172-173.
    [8]THAO H M,HONG N H,TUYEN N T,et al. Study on the effect of some of N,P,K fertilizer compounds on the yield and quality of Bp53 rice variety[J]. Journal of Agricultural Technology,2015,11(8):2 149-2 156.
    [9]DOSSOU-YOVO E R,BREGGEMANN N,JESSE N,et al. Reducing soil CO2emission and improving upland rice yield with no-tillage,straw mulch and nitrogen fertilization in northern Benin[J]. Soil and Tillage Research,2016,156:44-53.
    [10]王艺鹏,杨晓琳,谢光辉,等.1995—2014年中国农作物秸秆沼气化碳足迹分析[J].中国农业大学学报,2017,22(5):1-14.
    [11]彭春艳,罗怀良,孔静.中国作物秸秆资源量估算与利用状况研究进展[J].中国农业资源与区划,2014,35(3):14-20.
    [12]蓝妮,张礼宏,严锦华,等.废弃物在抑制茉莉土壤温室气体产生中的应用[J].实验室研究与探索,2016,35(5):35-40.
    [13]冯晓赟,万鹏,李洁,等.秸秆还田与氮肥配施对中南地区稻田土壤固碳和温室气体排放的影响[J].农业资源与环境学报,2016,33(6):508-517.
    [14]闵庆文,张永勋.福建福州茉莉花与茶文化系统[M].北京:中国农业出版社,2015.
    [15]胡喜生,洪伟,吴承祯,等.福州市土地生态系统服务时空分异特征[J].中国环境科学,2013,33(5):881-888.
    [16]汪旭明,曾冬萍,闵庆文,等.福州茉莉花种植园土壤化学计量比及其对碳释放潜力的影响[J].中国水土保持科学,2015,13(1):118-126.
    [17]刘小慧,严锦华,杨文文,等.秸秆及配施工农业废弃物对茉莉种植园碳排放的影响[J].环境科学学报,2017,37(4):1 555-1 563.
    [18]WANG W,ZENG C,SARDANS J,et al. Amendment with industrial and agricultural wastes reduces surface-water nutrient loss and storage of dissolved greenhouse gases in a subtropical paddy field[J]. Agriculture,Ecosystems&Environment,2016,231:296-303.
    [19]安婉丽,曾从盛,王维奇.模拟酸雨对福州平原水稻田温室气体排放的影响[J].环境科学学报,2017,37(10):3 984-3 994.
    [20]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [21]闫德智,王德建.长期施用化肥和秸秆对水稻土碳氮矿化的影响[J].土壤,2011,43(4):529-533.
    [22]ARNOLD K V,NILSSON M,HNELL B,et al. Fluxes of CO2,CH4and N2O from drained organic soils in deciduous forests[J]. Soil Biology and Biochemistry,2005,37(6):1 059-1 071.
    [23]WANG Y,AMUNDSON R,NIU X F. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2flux[J]. Global Biogeochemical Cycles,2000,14(1):199-211.
    [24]汤宏,沈健林,刘杰云,等.稻秸的不同组分对水稻土甲烷和二氧化碳排放的影响[J].生态环境学报,2016,25(7):1 125-1 133.
    [25]杨旭,兰宇,孟军,等.秸秆不同还田方式对旱地棕壤CO2排放和土壤碳库管理指数的影响[J].生态学杂志,2015,34(3):805-809.
    [26]李晓密,伦小秀,陈琪,等.不同施肥处理下冬小麦——夏玉米轮作农田温室气体的排放[J].环境化学,2014,33(4):591-596.
    [27]SNYDER C S,BRUULSEMA T W,JENSEN T L,et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture Ecosystems&Environment,2009,133(3-4):247-266.
    [28]闫翠萍,张玉铭,胡春胜,等.不同耕作措施下小麦——玉米轮作农田温室气体交换及其综合增温潜势[J].中国生态农业学报,2016,24(6):704-715.
    [29]高洪军,张卫建,彭畅,等.长期施肥下黑土玉米田土壤温室气体的排放特征[J].农业资源与环境学报,2017,34(5):422-430.
    [30]吴家梅,霍莲杰,纪雄辉,等.不同施肥处理对土壤活性有机碳和甲烷排放的影响[J].生态学报,2017,37(18):6 167-6 175.
    [31]田亚男,聂文婷,张水清,等.北亚热带红壤丘陵区3种土地利用方式下CH4通量及其影响因素[J].生态环境学报,2015,24(9):1 434-1 440.
    [32]宿敏敏,况福虹,吕阳,等.不同轮作体系不同施氮量甲烷排放比较研究[J].植物营养与肥料学报,2016,22(4):913-920.
    [33]张冉,赵鑫,濮超,等.中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析[J].农业工程学报,2015,31(22):1-6.
    [34]CHEN H H,LI X C,HU F,et al. Soil nitrous oxide emissions following crop residue addition:A meta-analysis[J]. Global Change Biology,2013,19(10):2 956-2 964.
    [35]肖乾颖,黄有胜,胡廷旭,等.施肥方式对紫色土农田生态系统N2O和NO排放的影响[J].中国生态农业学报,2018,26(2):203-213.
    [36]姜小凤,王淑英,丁宁平,等.施肥方式对旱地土壤酶活性和养分含量的影响[J].核农学报,2010,24(1):136-141.
    [37]李春越,白红英,党廷辉,等.农田土壤磷酸酶活性与土壤N2O排放通量的相关性[J].中国环境科学,2007,27(2):231-234.
    [38]王继红,刘景双,于君宝,等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J].水土保持学报,2004,18(1):35-38.
    [39]李涛,王小国,胡廷旭.生物炭对紫色土农田土壤NO排放的影响[J].土壤,2016,48(5):879-886.
    [40]CHU H Y,HOSEN Y,YAGI K. NO,N2O,CH4and CO2fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management[J]. Soil Biology and Biochemistry,2007,39(1):330-339.
    [41]龚振平,王雪松,宋秋来,等.不同有机质含量土壤CO2排放季节变化规律及差异研究[J].东北农业大学学报,2016,47(3):31-37.
    [42]宋敏,齐鹏,蔡立群,等.不同生物质炭输入水平下旱作农田温室气体排放研究[J].中国生态农业学报,2016,24(9):1 185-1 195.
    [43]程伟丽,肖千文,袁大刚,等.川西漂洗水稻土茶园茶树铁含量动态特征及影响因素[J].四川农业大学学报,2012,30(1):67-72.
    [44]WIDDEL F,SCHNELL S,HEISING S,et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature,1993,362(6 423):834-836.
    [45]宫健,崔育倩,谢文霞,等.滨海湿地CH4排放的研究进展[J].资源科学,2018,40(1):173-184.
    [46]PILEGAARD K. Processes regulating nitric oxide emissions from soils[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368:118-126.
    [47]王旭燕,张仁陟,蔡立群,等.不同施氮处理下旱作农田土壤CH4、N2O气体排放特征研究[J].环境科学学报,2015,35(11):3 655-3 661.
    [48]CHEN H H,MOTHAPO N V,SHI W. Soil moisture and p H control relative contributions of fungi and bacteria to N2O production[J]. Microbial Ecology,2015,69(1):180-191.