高速内倾穿浪无人三体船静水阻力性能优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization on Resistance Performance of an High-Speed Unmanned Tumblehome Wave-Piecing Trimaran in Calm Water
  • 作者:李志君 ; 高霄鹏 ; 霍聪
  • 英文作者:LI Zhijun;GAO Xiaopeng;HUO Cong;Depature of Naval Architecture,Naval University of Engineering;
  • 关键词:三体船 ; 阻力优化 ; 数值仿真 ; RANS方法
  • 英文关键词:trimaran;;resistance optimization;;numerical simulation;;RANS method
  • 中文刊名:CUXI
  • 英文刊名:Journal of Ordnance Equipment Engineering
  • 机构:海军工程大学舰船工程系;
  • 出版日期:2018-05-25
  • 出版单位:兵器装备工程学报
  • 年:2018
  • 期:v.39;No.238
  • 语种:中文;
  • 页:CUXI201805013
  • 页数:5
  • CN:05
  • ISSN:50-1213/TJ
  • 分类号:67-71
摘要
为满足百吨级反潜无人船快速部署的需求,以内倾穿浪三体船为母型船,基于RANS方法开展了不同主船体线型、侧体线型及侧体布置方式对阻力性能影响的数值仿真研究;首先分别对主侧体的阻力性能进行优化,然后利用主侧体间形成的有利兴波干扰进行阻力优化,得到最优的船型方案。在保持排水量不变的前提下,当目标船主船体和侧体的长宽比分别为14和18时压阻力显著降低,船型阻力最低;主船体和侧体波系相互叠加,当主船体和侧体的艏波相消或侧体处于主船体的波系干扰区以外时,静水阻力性能最优。
        Serial numerical simulation based on RANS is performed on an unmanned tumblehome wavepiecing trimaran in order to improve the resistance performance to meet the demand of hundred-ton antisubmarine unmanned ship's rapid deployment. The influence of factors including main hull form,lateral hull form and relative position of the lateral hull are carried out. The main hull and lateral hull were optimized respectively and then the trimaran with best resistance performance was obtained by using the favorable wave-making interference between the main hull and lateral hull. Being given constant displacement,it is effective to improve the resistance performance by increasing the length-width ratio of main hull and lateral hull of the target trimaran to 14 and 18 respectively,which brings down the pressure drag dramatically; and the total drag is lowest. The interference between the main hull and lateral hull can be eliminated farthest when the head waves canceled out each other or when the lateral hull is outside the interference region of the main hull.
引文
[1]BRIZZOLARA S,BRUZZONE D.Hydrodynamic optimization of high-speed trimaran hull forms[C]//Sydney:Proceedings of the International Offshore and Polar Engineering Conference,2008:547-554.
    [2]郦云,卢晓平.高速三体船阻力性能研究[J].船舶力学,2007,11(2):191-198.
    [3]顾敏童,郑丰,裘泳铭.小水面三体船阻力试验研究[J].上海交通大学学报,2003,37(8):1222-1225.
    [4]李培勇,裘泳铭,顾敏童,等.超细长三体船阻力计算研究[J].船舶工程,2002(2):10-12.
    [5]贾敬蓓,宗智,张文鹏.前三体船概念及其阻力和运动性能试验研究[J].中国舰船研究,2011,6(2):9-14.
    [6]宗智.前置侧片体三体船的性能优势[C]//上海:第二十届中国国际高性能船学术报告会暨中国国际游艇设计建造技术论坛.2015:131-136.
    [7]陈飞宇,余建星,马伟林,等.三体船阻力预报与侧体布局的优化[J].中国海洋大学学报,2016,46(5):125-131.
    [8]金梦显,张佳宁,张雷,等.基于阻力数值模拟的三体船侧体布置优化[J].大连海事大学学报,2015,41(3):15-18.
    [9]JAVANMARDI M R,JAHANBAKHSH E,SEI M S.Hydrodynamic analysis of trimaran vessels[J].Polish Maritime Research,2008,15(55):11-18.
    [10]周广利,艾子涛,邓锐,等.高速三体船的阻力预报方法研究[J].船舶力学,2016,20(7):805-815.