第三组份端基对有机太阳能电池性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells
  • 作者:薛佩瑶 ; 张俊祥 ; 辛景明 ; RECH ; Jeromy ; 李腾飞 ; 孟凯鑫 ; 王嘉宇 ; 马伟 ; 尤为 ; MARDER ; Seth ; R. ; 韩平 ; 占肖卫
  • 英文作者:XUE Peiyao;ZHANG Junxiang;XIN Jingming;RECH Jeromy;LI Tengfei;MENG Kaixin;WANG Jiayu;MA Wei;YOU Wei;MARDER Seth R.;HAN Ray P.S.;ZHAN Xiaowei;Department of Materials Science and Engineering,College of Engineering,Key Laboratory of Polymer Chemistry and Physics of Ministry of Education,Peking University;Center for Organic Photonics and Electronics,School of Chemistry and Biochemistry,Georgia Institute of Technology;State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University;Department of Chemistry,University of North Carolina at Chapel Hill;
  • 关键词:稠环电子受体 ; 非富勒烯受体 ; 有机太阳能电池 ; 端基效应 ; 三元共混
  • 英文关键词:Fused-ring electron acceptor;;Non-fullerene acceptor;;Organic solar cell;;Terminal-group effect;;Ternary blend
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:北京大学工学院材料科学与工程系教育部高分子化学与物理重点实验室;美国佐治亚理工大学化学与生物化学学院有机光电中心;西安交通大学金属材料强度国家重点实验室;美国北卡罗来纳大学教堂山分校化学系;
  • 出版日期:2019-03-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Natural Science Foundation of China(21734001,51761165023,21504066,21534003);; the Department of the Navy U.S.(N00014-14-1-0580,N00014-16-1-2520);; the Ministry of Science and Technology,China(2016YFA0200700);; the Natural Science Foundation,U.S.(DMR-1507249,CBET-1639429)~~
  • 语种:英文;
  • 页:WLHX201903009
  • 页数:9
  • CN:03
  • ISSN:11-1892/O6
  • 分类号:40-48
摘要
我们用宽带隙聚合物FTAZ(苯并二噻吩-二氟苯并氮三唑共聚物)作为给体,窄带隙稠环电子受体FOIC(六噻吩稠环-氟代腈基茚酮类化合物)作为受体,中带隙稠环电子受体IDT-IC (引达醒-腈基茚酮类化合物)和IDT-NC (引达醒-腈基苯并茚酮类化合物)分别作为第三组分,制备了三元共混有机太阳能电池,研究了第三组分端基对器件性能的影响。IDT-IC和IDT-NC具有相似的化学结构,仅端基不同;IDT-IC端基是苯环,而IDT-NC端基是萘环。与IDT-IC相比,IDT-NC吸收光谱红移40nm,LUMO能级下移0.11 eV,电子迁移率提高50%。基于FTAZ:FOIC,FTAZ:IDT-IC,FTAZ:IDT-NC二元共混体系的有机太阳能电池效率分别为9.73%,7.48%,7.68%。FTAZ:FOIC:IDT-IC和FTAZ:FOIC:IDT-NC三元共混器件的效率分别提升到11.2%和10.4%。对于FTAZ:FOIC:IDT-IC三元共混器件,由于IDT-IC比FOIC具有更高的LUMO能级,开路电压(V_(OC))随着IDT-IC含量的增多而增加。由于IDT-IC与FOIC吸收光谱高度互补,短路电流(J_(SC))也显著提高。第三组份IDT-IC的加入改善了薄膜形貌和载流子传输,填充因子(FF)有所提高。对于FTAZ:FOIC:IDT-NC三元共混器件,由于IDT-NC比FOIC具有更高的LUMO能级,V_(OC)随着IDT-NC含量的增多而增加;但由于IDT-NC的LUMO能级比IDT-IC的LUMO能级低,其V_(OC)比FTAZ:FOIC:IDT-IC体系低。由于FOIC和IDT-NC吸收光谱高度重叠,J_(SC)降低。第三组份IDT-NC的加入改善了薄膜形貌和载流子传输,FF提高,甚至比FTAZ:FOIC:IDT-IC体系有更好的载流子传输和FF。
        Ternary blends have been considered as an effective approach to improve power conversion efficiency(PCE) of organic solar cells(OSCs). Among them, the fullerene-containing ternary OSCs have been studied extensively, and their PCEs are as high as over 14%. However,all non-fullerene acceptor ternary OSCs are still limited by their relatively lower PCEs. In this work,we used wide-bandgap benzodithiophene-difluorobenzotriazole copolymer FTAZ as the donor, low-bandgap fused-ring electron acceptor(FREA),fused tris(thienothiophene) end-capped by fluorinated 1,1-dicyanomethylene-3-indanone(FOIC)as acceptor, and two medium-bandgap FREAs,indaceno-dithiophene endcapped by 1,1-dicyanomethylene-3-indanone(IDT-IC) and indacenodithiophene end-capped by 1,1-dicyanomethylene-3-benzoindanone(IDT-NC), as the third components to fabricate the ternary blends FTAZ:FOIC:IDT-IC and FTAZ:FOIC:IDT-NC, and investigated the effects of the third components on the performance of ternary OSCs. Both IDT-IC and IDT-NC are based on the same indacenodithiophene core but contain different terminal groups(phenyl and naphthyl). Relative to IDT-IC with phenyl terminal groups, IDT-NC with naphthyl terminal groups has extended Tr-conjugation, down-shifted lowest unoccupied molecular orbital(LUMO), red-shifted absorption andhigher electron mobility. The binary devices based on the FTAZ:FOIC, FTAZ:IDT-IC and FTAZ:IDT-NC blends exhibit PCEs of9.73%, 7.48% and 7.68%, respectively. Compared with corresponding binary devices, both ternary devices based on FTAZ:FOIC:IDT-IC and FTAZ:FOIC:IDT-NC exhibit better photovoltaic performances. When the IDT-IC weight ratio in acceptors is 50%, the FTAZ:FOIC:IDT-IC ternary devices exhibit the best PCE of 11.2%. The ternary-blend OSCs yield simultaneously improved open-circuit voltage(VOC), short-circuit current density(Jsc) and fill factor(FF) compared with the binary devices based on FTAZ:FOIC. The higher VOC is attributed to the higher LUMO energy level of IDT-IC compared with FOIC. The improved Jsc is attributed to the complementary absorption of FOIC and IDT-IC. The introduction of IDT-IC improves blend morphology and charge transport, leading to higher FF. The FTAZ:FOIC:IDT-NC system yields a higher PCE of 10.4% relative to the binary devices based on FTAZ:FOIC as the active layer. However, the PCE of the FTAZ:FOIC:IDT-NC-based ternary devices is lower than that of the FTAZ:FOIC:IDT-IC-based ternary devices.Compared with the binary devices based on FTAZ:FOIC, in FTAZ:FOIC:IDT-NC-based ternary devices, as the ratioof the third component increases, the VOC increases due to the higher LUMO energy level of IDT-NC, the FF increases due to optimized morphology and improved charge transport, while the Jsc decreases due to the overlapped absorption of FOICand IDT-NC. The terminal groups in the thirdcomponents affect the performance of the ternary OSCs.The lower LUMO energy level of IDT-NC is responsible for the lower VOC of the FTAZ:FOIC:IDT-NC devices. The red-shifted absorption of IDT-NC leads to the overlapping of the absorption spectra of IDT-NC and FOIC and lower JSC. On the other hand,replacing the phenyl terminal groups by the naphthyl terminal groups influences the π-π packing and charge transport.The FTAZ:FOIC:IDT-NC blend exhibits higher electron mobility and more balanced charge transport than FTAZ:FOIC:IDT-IC,leading to a higher FF.
引文
(1)Cheng, Y.J.; Yang, S. H.; Hsu, C. S. Chem. Rev.2009,109, 5868.doi:10.1021/cr900182s
    (2)Li, G.; Zhu, R.; Yang, Y. Nat. Photon.2012,6, 153.doi:10.1038/nphoton.2012.11
    (3)Lin, Y. Z.; Li, Y. F.; Zhan, X. W.Chem. Soc. Rev.2012,41, 4245.doi:10.1039/c2cs15313k
    (4)Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Alexander, M. S.; Zhao, D. L.;Yu,L. P. Chem.Rev. 2015,115, 12666.doi:10.1021/acs.chemrev.5b00098
    (5)Li, Y. W.; Xu, G. Y.; Cui, C. H.; Li, Y. F.Adv. Mater:2017,8, 1701791.doi:10.1002/aenm.201701791
    (6)Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J.Science1995,270, 1789. doi:10.1126/science.270.5243.1789
    (7)Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.;Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature1995,376, 498. doi:10.1038/376498a0
    (8)Zhao, J. B.; Li, Y. K.; Yang, G. F.; Jiang, K.; Lin, H. R.; Ade, H.; Ma,W.; Yan, H. Nat. Energy2016,1, 15027.doi:10.1038/Nenergy.2015.27
    (9)Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim. J.H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K.; et al.Nat.Mater.2018,17, 253. doi:10.1038/s41563-017-0005-1
    (10)Yan, C. Q.; Barlow, S.; Wang, Z. H.; Yan, H.; Jen, A. K. Y.; Marder,S. R.; Zhan, X. W.Nat. Rev. Mater.2018,3, 18003.doi:10.103 8/natrevmats.2018.3
    (11)Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Nat. Photon.2018,12, 131.doi:10.103 8/s41566-018-0104-9
    (12)Zhan, X. W.; Tan, Z. A.; Domercq, B.; An, Z. S.; Zhang, X.; Barlow,S.; Li, Y. F.; Zhu, D. B.; Kippelen, B.; Marder, S. R. J. Am. Chem.Soc.2007,129, 7246. doi:10.1021/ja071760d
    (13)Zhong, Y.; Trinh, M. T.; Chen, R. S.; Purdum, G. E.; Khlyabich, P. P.;Sezen, M.; Oh, S.; Zhu, H. M.; Fowler, B.; Zhang, B. Y.; et al.Nat.Commun. 2015,6, 8242. doi:10.1038/ncomms9242
    (14)Zhang, J. Q.; Li, Y. K.; Huang, J. C.; Hu, H. W.; Zhang, G. Y.; Ma, T.X.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H. J. Am. Chem. Soc.2017,139, 16092. doi:10.1021/jacs.7b09998
    (15)Meng, D.; Sun, D.; Zhong, C. M.; Liu, T.; Fan, B. B.; Huo, L. J.; Li,Y.; Jiang, W.; Choi, H.; Kim, T.; et al.J. Am. Chem. Soc.2016,138,375. doi:10.1021/jacs.5b11149
    (16)Meng, D.; Fu, H. T.; Xiao, C. Y.; Meng, X. Y.; Winands, T.; Ma, W.;Wei, W.; Fan, B. B.; Huo, L. J.; Doltsinis, N. L.; et al.J. Am. Chem.Soc. 2016,138, 10184. doi:10.1021/jacs.6b04368
    (17)Hartnett, P. E.; Timalsina, A.; Matte, H. S. S. R.; Zhou, N. J.; Guo, X.G.; Zhao, W.; Facchetti, A.; Chang, R. P. H.; Hersam, M. C.;Wasielewski, M. R.;et al.J. Am. Chem. Soc.2014,136, 16345.doi:10.1021/ja508814z
    (18)Wu, Q. H.; Zhao, D. L.; Schneider, A. M.; Chen, W.; Yu, L. P.J. Am.Chem. Soc.2016,138, 7248. doi:10.1021/jacs.6b03562
    (19)Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.;Zhan, X. WAdv. Mater.2015,27, 1170.doi:10.1002/adma.201404317
    (20)Lin, Y. Z.; Li, T. F.; Zhao, F. W.; Han, L.; Wang, Z. Y.; Wu, Y.; He, Q.;Wang, J. Y.; Huo, L. J.; Sun, Y. M.; et al.LAdv. Energy Mater.2016,6,1600854. doi:10.1002/aenm.201600854
    (21)Dai, S. X.; Zhao, F. W.; Zhang, Q. Q.; Lau, T. K.; Li, T. F.; Liu, K.;Ling, Q. D.; Wang, C. R.; Lu, X. H.; You, W.;et al.J. Am. Chem. Soc.2017,139, 1336. doi:10.1021/jacs.6b12755
    (22)Li, T. F.; Dai, S. X.; Ke, Z. F.; Yang, L. X.; Wang, J. Y.; Yan, C. Q.;Ma, W.; Zhan, X. W.Adv. Mater.2018,30, 1705969.doi:10.1002/adma.201705969
    (23)Li, S. X.; Zhan, L. L.; Liu, F.; Ren, J.; Shi, M. M.; Li, C. Z.; Russell,T. P.; Chen, H. Z. Adv. Mater.2017,30,1705208.doi:10.1002/adma.201705208
    (24)Feng, S. Y.; Zhang, C. E; Liu, Y. H.; Bi, Z. Z.; Zhang, Z.; Xu, X. J.;Ma, W.; Bo, Z. SAdv. Mater.2017,29, 1703527.doi:10.1002/adma.201703527
    (25)Lin,Y. Z.; Zhao, F. W.; He,Q.; Huo, L. J.; Wu,Y.; Parker,T. C.; Ma,W.; Sun, Y. M.; Wang, C. R.; Zhu, D. B.; et al.J. Am. Chem.Soc.2016,138,4955. doi:10.1021/jacs.6b02004
    (26)Wang,W.; Yan,C. Q.; Lau,T. K.; Wang,J. Y.; Liu,K.; Fan,Y.; Lu,X.H.; Zhan, X. W.Adv. Mater.2017,29, 1701308.doi:10.1002/adma.201701308
    (27)Wang, J. Y.; Wang, W.; Wang, X. H.; Wu, Y.; Zhang, Q. Q.; Yan,C.Q.; Ma, W.; You, W.; Zhan, X. WAdv. Mater.2017,29, 1702125.doi:10.1002/adma.201702125
    (28)Jia, B. Y.; Dai, S. X.; Ke, Z. F.; Yan, C. Q.; Ma, W.; Zhan, X. W.Chem.Mater.2017,30, 239. doi:10.1021/acs.chemmater.7b04251
    (29)Xu, S. J.; Zhou, Z. C.; Liu, W. Y.; Zhang, Z. B.; Liu, F.; Yan, H. P.;Zhu, X. Z. Adv. Mater.2017,29, 1704510.doi:10.1002/adma.201704510
    (30)Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q. Q.; Wang, J. Y.; Li, J.;Ling, Q.; Wei, Z. X.; Ma, W.; You, W.; et al.Adv. Mater.2017,29,1700144. doi:10.1002/adma.201700144
    (31)Zhu, J. S.; Ke, Z. F.; Zhang, Q. Q.; Wang, J. Y.; Dai, S. X.; Wu, Y.;Xu, Y.; Lin, Y. Z.; Ma, W.; You, W.;et al.LAdv. Mater.2017,30,1704713. doi:10.1002/adma.201704713
    (32)Lin,Y. Z.; Zhao, F. W.; Prasad, S. K. K.; Chen,J. D.; Cai,W. Z.;Zhang, Q. Q.; Chen, K.; Wu, Y.; Ma, W.; Gao, F.; et al.Adv.Mater.2018,30,1706363. doi:10.1002/adma.201706363
    (33)Luo, Z. H.; Bin, H. J.; Liu, T.; Zhang, Z. G.; Yang, Y. K.; Zhong, C.;Qiu, B. B.; Li, G. H.; Gao, W.; Xie, D. J.; et al.Adv. Mater.2018,30,1706124. doi:10.1002/adma.201706124
    (34)Zhao, W. C.; Li, S. S.; Yao, H. F.; Zhang, S. Q.; Zhang, Y.; Yang, B.;Hou, J. H.J. Am. Chem. Soc.2017,139, 7148.doi:10.1021/jacs.7b02677
    (35)Fei, Z. P.; Eisner, F. D.; Jiao, X. C.; Azzouzi, M.; Rohr, J. A.; Han, Y.;Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; et al.Adv. Mater.2018,30, 1705209. doi:10.1002/adma.201705209
    (36)Zhang, Z. G.; Yang, Y. K.; Yao, J.; Xue, L. W.; Chen, S. S.; Li, X. J.;Morrison, W.; Yang, C.; Li, Y. F.Angew. Chem. Int. Ed.2017,56,13503. doi:10.1002/anie.201707678
    (37)Bin, H. J.; Yang Y. K.; Zhang, Z. G.; Ye, L.; Ghasemi, M.; Chen, S. S.;Zhang, Y. D.; Zhang, C. F.; Sun, C. K.; Xue, L. M.; et al.J Am. Chem.Soc. 2017,139, 5085. doi:10.1021/jacs.6b12826
    (38)Deng, D.; Zhou, E. J.; Wei, Z. X. Acta Phys.-Chim. Sin.2018,34,1239.[邓丹,周二军,魏志祥.物理化学学报,2018,34,1239.]doi:10.3 866/PKU. WHXB201803272
    (39)Lu, L. Y.; Kelly, M. A.; You, W.; Yu, L. P.Nat. Photon.2015,9, 491.doi:10.1038/Nphoton.2015.128
    (40)Huang, W. C.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. Adv. Mater.2018,9,190. doi:10.1002/adma.201705706
    (41)Xu, W. D.; Gao, F. Mater. Horiz.2018, 5, 206.doi:10.1039/C7MH00958E
    (42)Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.; Jiang,K.; Lin, H. R.; Ade, H.; Yan, H. Nat. Commun.2014,5, 5293.doi:10.1038/ncomms6293
    (43)Li, W.; Yan, Y.; Gong, Y. Y.; Cai, J. L.; Cai, F. L.; Gurney, R. S.; Liu,D.; Pearson, A. J.; Lidzey, D. G.; Wang, T. Adv. Funct. Mater.2017,28,1704212. doi:10.1002/adfm.201704212
    (44)Zhong, W. K.; Cui, J.; Fan, B. B.; Ying, L.; Wang, Y.; Wang, X.;Zhang, G. C.; Jiang, X. F.; Huang, F.; Cao, Y. Chem. Mater.2017,29,8177. doi:10.1021/acs.chemmater.7b02228
    (45)Cheng, P.; Zhang, M. Y.; Lau, T. K.; Wu, Y.; Jia, B. Y.; Wang, J. Y.;Yan, C. Q.; Qin, M.; Lu, X. H.; Zhan, X. W.Adv. Mater.2017,29,1605219. doi:10.1002/adma.201605216
    (46)Cheng, P.; Zhan, X. W.Mater. Horiz.2015,2, 447.doi:10.1039/c5mh00090d
    (47)Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. J. Am. Chem.Soc.2011,133, 14534. doi:10.1021/ja205977z
    (48)Street, R. A.; Davies, D.; Khlyabich, P. P.; Burkhartart, B.; Thompson,B. C. J. Am. Chem. Soc.2013,135, 986. doi:10.1021/ja3112143
    (49)Dai,S. X.; Li,T. F.; Wang, W.; Xiao, Y. Q.; Lau,T. K.; Li,Z. Y.;Liu, K.; Lu, X. H; Zhan, X. W.Adv. Mater.2018, 30, 1706571.doi:10.1002/adma.201706571
    (50)Liu, T.; Guo, Y.; Yi, Y. P.; Huo, L. J.; Xue, X. N.; Sun, X. B.; Fu, H.T.; Xiong, W. T.; Meng, D.; Wang, Z. H.; et al.Adv. Mater. 2016,28,10008. doi:10.1002/adma.201602570
    (51)Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.;Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.;et al.Nat. Mater.2016,16, 363. doi:10.1038/nmat4797
    (52)Zhang, T.; Zhao, X. L.; Yang, D. L.; Tian, Y. M.;Yang, X. N.Adv.Energy Mater.2017,7, 1701691. doi:10.1002/aenm.201701691
    (53)Cheng, P.; Yan, C. Q.; Wu, Y.; Wang, J. Y.; Qin, M.; An, Q. S.; Cao, J.M.; Huo, L. J.; Zhang, F. J.; Ding, L. M.; et al.Adv. Mater.2016,28,8021. doi:10.1002/adma.201602067
    (54)Xiao, Z.; Jia, X.; Ding, L. M.Chin. Sci. Bull.2017,62, 1562.doi:10.1016/j.scib.2017.11.003
    (55)Zhang, J. Q.; Zhang, Y. J.; Fang, J.; Lu, K.; Wang, Z. Y.; Ma, W.; Wei,Z. X.J. Am. Chem. Soc.2017,137, 8176. doi:10.1021/jacs.5b03449
    (56)Zhang, J. X.; Yan, C. Q.; Wang, W.; Xiao, Y. Q.; Lu, X. H.; Barlow,S.; Parker, T. C.; Zhan, X. W.; Marder, S. R. Chem. Mater.2018,30,309. doi:10.1021/acs.chemmater.7b04499
    (57)Li, S. S.; Ye, L.; Zhao, W. C.; Liu, X. Y.; Zhu, J.; Ade, H.; Hou, J. H.Adv.Mater.2017,29, 1704501. doi:10.1002/adma.201704051
    (58)Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J. Am.Chem. Soc.2011,133, 4625. doi:10.1021/ja1112595
    (59)Schilinsky, P.; Waldauf, C.; Brabec, C. J. Appl. Phys. Lett.2002,81,3885. doi:10.1063/1.1521244
    (60)Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian,R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. J. Phys. Conf.Ser. 2010,247, 012007. doi:10.1088/1742-6596/247/1/012007
    (61)Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore,H. A.; Ade, H.; Hexemer, A.; Wang, C. Rev. Sci. Instrum.2012, 83,045110. doi:10.1063/1.3701831
    (62)Wu, Y.; Wang, Z. Y.; Meng; X. Y.; Ma, W. Prog. Chem. 2017,2, 93.doi:10.7536/PC 160444
    (63)Zhang, L.; Ma, W. Chin. J. Polym. Sci.2017,35, 184.doi:10.1007/s 10118-017-1898-5