饲料中花生四烯酸含量对刺参生长性能、抗氧化能力及脂肪酸代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of dietary arachidonic acid on the growth performance, antioxidant capacity, and fatty acid metabolism of sea cucumber(Apostichopus japonicus)
  • 作者:王成强 ; 王际英 ; 李宝山 ; 孙永智 ; 宋志东 ; 王晓艳 ; 韩秀杰 ; 王丽丽
  • 英文作者:WANG Chengqiang;WANG Jiying;LI Baoshan;SUN Yongzhi;SONG Zhidong;WANG Xiaoyan;HAN Xiujie;WANG Lili;Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute;College of Fisheries and Life Science, Shanghai Ocean University;
  • 关键词:刺参 ; 花生四烯酸 ; 生长 ; 抗氧化能力 ; 脂肪酸代谢
  • 英文关键词:Apostichopus japonicus;;arachidonic acid;;growth performance;;antioxidant capacity;;fatty acid metabolism
  • 中文刊名:ZSCK
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:山东省海洋资源与环境研究院山东省海洋生态修复重点实验室;上海海洋大学水产与生命学院;
  • 出版日期:2018-05-15
  • 出版单位:中国水产科学
  • 年:2018
  • 期:v.25
  • 基金:山东省科技发展计划项目(2016GSF115005);; 山东省现代农业产业技术体系项目(SDAIT-22-06)
  • 语种:中文;
  • 页:ZSCK201803010
  • 页数:12
  • CN:03
  • ISSN:11-3446/S
  • 分类号:92-103
摘要
为探究饲料中添加花生四烯酸(arachidonic acid,ARA)对刺参(Apostichopus japonicus)生长性能、抗氧化能力及脂肪酸代谢的影响,选用初始体重为(10.78±0.06)g的刺参为研究对象,以鱼粉和发酵豆粕为主要蛋白质源,小麦粉为主要糖源制作基础饲料,通过在基础饲料中添加不同比例的ARA-纯化油,制成ARA含量分别为0.02%(对照组)、0.17%、0.36%、0.51%、0.59%和0.98%(占饲料干重)的6组等氮等脂的实验饲料,在室内循环水养殖系统进行为期56 d的养殖实验。结果表明,随着饲料中ARA含量的升高,刺参增重率(weight gain rate,WGR)呈先上升后降低的趋势,0.36%和0.51%ARA饲料组刺参WGR显著高于其他处理组(P<0.05),刺参的特定生长率(specific growth rate,SGR)和饲料效率(feed efficiency,FE)与WGR具有相同的变化趋势;刺参体壁粗脂肪含量随饲料ARA含量升高呈先降低后升高的趋势,在0.51%ARA饲料组含量最低,且显著低于对照组与0.98%ARA饲料组(P<0.05);同时,随饲料中ARA含量的提高,刺参体壁中ARA和n-6多不饱和脂肪酸(n-6 polyunsaturated fatty acids,n-6 PUFA)含量呈显著上升趋势,而二十碳五烯酸(eicosapentaenioc acid,EPA)、二十二碳六烯酸(docosahexaenoic acid,DHA)和n-3多不饱和脂肪酸(n-3 polyunsaturated fatty acids,n-3 PUFA)含量显著降低(P<0.05);抗氧化能力方面,0.36%和0.51%ARA饲料组刺参肠道中超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和总抗氧化能力酶(total antioxidant capacity enzyme,T-AOC)活性均显著高于对照组与0.98%ARA饲料组(P<0.05),而肠道丙二醛(malondialdehyde,MDA)含量呈相反的变化趋势(P<0.05);刺参肠道中脂肪酸合成酶(fatty acid synthase,FAS)和乙酰辅酶A羧化酶(acetyl-Co A carboxylase,ACC)活性随饲料ARA含量的升高呈显著降低趋势(P<0.05);刺参肠道中肉毒碱棕榈酰转移酶-1(carnitine palmitoyltransferase-1,CPT-1)活性随饲料ARA含量升高呈先升高后降低的趋势(P>0.05)。研究表明,在本实验条件下,饲料中添加适量ARA(0.36%~0.51%)能够对刺参生长、抗氧化能力起到一定的促进作用,同时结果显示,饲料ARA含量会对刺参肠道内脂肪酸代谢产生一定的影响。
        A 56-d feeding experiment in an indoor flowing-through water system was conducted to evaluate the effects of arachidonic acid(ARA)in diets on the growth performance,antioxidant capacity,and body wall fatty acid composition of sea cucumbers(Apostichopus japonicas)with initial weights of(10.78±0.06)g.Six isonitrogenous and isoenergetic diets with varying levels of dietary ARA[0.02%(control group),0.17%,0.36%,0.51%,0.59%,and 0.98%]were formulated.The ARA content had no significant effect on survival rate(87.50%-94.17%;P>0.05).However,both growth rate(WGR)and feed efficiency(FE)increased with increasing ARA content until reaching peak levels at 0.51%dietary ARA,but decreased thereafter(P<0.05).Body wall composition analysis indicated that the whole-body lipid content initially decreased but then increased with increasing dietary ARA,whereas the whole-body protein,ash,and moisture contents were unaffected.Superoxide dismutase(SOD),catalase(CAT),and total antioxidant capacity enzyme(T-AOC)activities in the intestinal tract initially increased with increasing ARA content but then decreased(P<0.05),whereas the malondialdehyde(MDA)content of the intestinal tract exhibited a contrasting pattern(P<0.05).Fatty acid synthase(FAS)and acetyl-COA carboxylase(ACC)activities in the intestinal tract were unaffected when dietary ARA content decreased from 0.02%to 0.59%but decreased significantly when the dietary ARA content increased from 0.59%to 0.98%(P<0.05).The ARA and n-6PUFA contents of the body wall increased with increasing dietary ARA,whereas the EPA and DHA content of the body wall decreased.Therefore,dietary ARA contents of 0.36%–0.51%could be used to promote the growth performance and intestinal antioxidant capacity of sea cucumbers under experimental conditions.The effects of ARA level in diet on the activities of fatty acid synthase,acetyl-Co A carboxylase,and carnitine palmitoyltransferase-1in the intestinal tract of sea cucumber were also observed in the study.
引文
[1]Johnson M,Carey F,Mc Millan R M.Alternative pathways of arachidonate metabolism:prostaglandins,thromboxane and leukotrienes[J].Essays in Biochemistry,1983,19:140-141.
    [2]Atalah E,Hernández-Cruz C M,Benítez-Santana T,et al.Importance of the relative levels of dietary arachidonic acid and eicosapentaenoic acid for culture performance of gilthead seabream(Sparus aurata)larvae[J].Aquaculture Research,2011,42(9):1279-1288.
    [3]Wang C Q,Liang M Q,Xu H G,et al.Requirement of arachidonic acid in adult Japanese seabass(Lateolabrax japonicas)[J].Progress in Fishery Sciences,2016,37(5):46-55.[王成强,梁萌青,徐后国,等.大规格鲈鱼(Lateolabrax japonicas)对饲料中花生四烯酸的需求量[J].渔业科学进展,2016,37(5):46-55.]
    [4]Tian J J,Ji H,Oku H,et al.Effects of dietary arachidonic acid(ARA)on lipid metabolism and health status of juvenile grass carp,Ctenopharyngodon idellus[J].Aquaculture,2014,430:57-65.
    [5]Luo Z,Tan X Y,Li X D,et al.Effect of dietary arachidonic acid levels on growth performance,hepatic fatty acid profile,intermediary metabolism and antioxidant responses for juvenile Synechogobius hasta[J].Aquaculture Nutrition,2012,18(3):340-348.
    [6]Zhang Y Q,Xu H G,Cao L,et al.Effects of dietary arachidonic acid on the sex steroid hormone synthesis in turbot broodstock before maturation[J].Journal of Fisheries of China,2017,41(4):588-601.[张圆琴,徐后国,曹林,等.饲料中花生四烯酸对发育前期大菱鲆亲鱼性类固醇激素合成的影响[J].水产学报,2017,41(4):588-601.]
    [7]Zhu W,Mai K S,Zhang B G,et al.Study on dietary protein and lipid requirement for sea cucumber,Stichopus japonicus[J].Marine Sciences,2005,29(3):54-58.[朱伟,麦康森,张百刚,等.刺参稚参对蛋白质和脂肪需求量的初步研究[J].海洋科学,2005,29(3):54-58.]
    [8]Liao M L.The research of requirement of dietary lipid and n-3 HUFA for sea cucumber(Apostichopus japonicus)juveniles[D].Dalian:Dalian Ocean University,2014.[廖明玲.刺参幼参脂肪及n-3系列高度不饱和脂肪酸需求的研究[D].大连:大连海洋大学,2014.]
    [9]Zuo R T,Li M,Qin Y B,et al.Effects of dietary docosahexaenoic acid(DHA)content on growth performance and nutrient composition in body wall of adult sea cucumber Apostichopus japonicus[J].Journal of Dalian Ocean University,2017,32(2):172-177.[左然涛,李敏,秦宇博,等.饲料中DHA含量对刺参成参生长及其体壁营养成分的影响[J].大连海洋大学学报,2017,32(2):172-177.]
    [10]Mourente G,Tocher D R,Diaz-Salvago E,et al.Study of the n-3 highly unsaturated fatty acids requirement and antioxidant status of Dentex dentex larvae at the Artemia feeding stage[J].Aquaculture,1999,179(1-4):291-307.
    [11]Castell J D,Bell J G,Tocher D R,et al.Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival,growth and fatty acid composition of juvenile turbot(Scophthalmus maximus)[J].Aquaculture,1994,128(3-4):315-333.
    [12]Liu J K,Chen X L,Li K R,et al.Effects of different contents of arachidonic acid in experimental microdiets on growth and survival of larval Japanese flounder Paralichthys olivaceus[J].Oceanologia et Limnologia Sinica,2005,36(5):418-422.[刘镜恪,陈晓琳,李岿然,等.实验微粒饲料中花生四烯酸含量对牙鲆(Paralichthys olivaceus)仔稚鱼生长、存活的影响[J].海洋与湖沼,2005,36(5):418-422.]
    [13]Xie F J.Studies on nutritional physiology of amino acid and fatty acid for large yellow croaker(Pseudosciaena crocea)larvae abstract[D].Qingdao:Ocean University of China,2011.[谢奉军.大黄鱼仔稚鱼氨基酸及脂肪酸营养生理的研究[D].青岛:中国海洋大学,2011.]
    [14]Xu H G,Ai Q H,Mai K S,et al.Effects of dietary arachidonic acid on growth performance,survival,immune response and tissue fatty acid composition of juvenile Japanese seabass,Lateolabrax japonicas[J].Aquaculture,2010,307(1-2):75-82.
    [15]Ishizaki Y,Takeuchi T,Watanabe T,et al.A preliminary experiment on the effect of Artemia enriched with arachidonic acid on survival and growth of yellowtail[J].Fisheries Science,1998,64(2):295-299.
    [16]Furuita H,Yamamoto T,Shima T,et al.Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus[J].Aquaculture,2003,220(1-4):725-735.
    [17]Zuo R T,Mai K S,Xu W,et al.Advance of studies on the effects of fatty acids on immune responses and nutritional regulation mechanism in fish species[J].Journal of Fisheries of China,2015,39(7):1079-1088.[左然涛,麦康森,徐玮,等.脂肪酸对鱼类免疫系统的影响及调控机制研究进展[J].水产学报,2015,39(7):1079-1088.]
    [18]Salini M J,Wade N M,Araújo B C,et al.Eicosapentaenoic acid,arachidonic acid and eicosanoid metabolism in juvenile barramundi Lates calcarifer[J].Lipids,2016,51(8):973-988.
    [19]Carrier III J K,Watanabe W O,Harel M,et al.Effects of dietary arachidonic acid on larval performance,fatty acid profiles,stress resistance,and expression of Na+/K+ATPase m RNA in black sea bass Centropristis striata[J].Aquaculture,2011,319(1-2):111-121.
    [20]Sargent J R,Bell J G,Bell M V,et al.Requirement criteria for essential fatty acids[J].Journal of Applied Ichthyology,1995,11(3-4):183-198.
    [21]Tang D G,Chen Y Q,Honn K V.Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(11):5241-5246.
    [22]Lund I,Steenfeldt S J,Hansen B W.Effect of dietary arachidonic acid,eicosapentaenoic acid and docosahexaenoic acid on survival,growth and pigmentation in larvae of common sole(Solea solea L.)[J].Aquaculture,2007,273(4):532-544.
    [23]Bessonart M,Izquierdo M S,Salhi M,et al.Effect of dietary arachidonic acid levels on growth and survival of gilthead sea bream(Sparus aurata L.)larvae[J].Aquaculture,1999,179(1-4):265-275.
    [24]Ai Q H,Yan J,Mai K S.Reserch progresses of lipids and fatty acids transport in fish[J].Acta Hydrobiologica Sinica,2016,40(4):859-868.[艾庆辉,严晶,麦康森.鱼类脂肪与脂肪酸的转运及调控研究进展[J].水生生物学报,2016,40(4):859-868.]
    [25]Trushenski J,Schwarz M,Lewis H,et al.Effect of replacing dietary fish oil with soybean oil on production performance and fillet lipid and fatty acid composition of juvenile cobiaRachycentron canadum[J].Aquaculture Nutrition,2011,17(2):e437-e447.
    [26]Zuo R T,Ai Q H,Mai K S,et al.Effects of dietary n-3 highly unsaturated fatty acids on growth,nonspecific immunity,expression of some immune related genes and disease resistance of large yellow croaker(Larmichthys crocea)following natural infestation of parasites(Cryptocaryon irritans)[J].Fish&Shellfish Immunology,2012,32(3):249-258.
    [27]Yu H B,Gao Q F,Dong S L,et al.Changes in fatty acid profiles of sea cucumber Apostichopus japonicus(Selenka)induced by terrestrial plants in diets[J].Aquaculture,2015,442:119-124.
    [28]Wen B,Gao Q F,Dong S L,et al.Effects of different feed ingredients on growth,fatty acid profiles,lipid peroxidation and aminotransferases activities of sea cucumber Apostichopus japonicus(Selenka)[J].Aquaculture,2016,454:176-183.
    [29]Hasegawa N,Sawaguchi S,Tokuda M,et al.Fatty acid composition in sea cucumber Apostichopus japonicus fed with microbially degraded dietary sources[J].Aquaculture Research,2014,45(12):2021-2031.
    [30]Liu X Y,Wang L,Feng Z F,et al.Molecular cloning and functional characterization of the fatty acid delta 6 desaturase(FAD6)gene in the sea cucumber Apostichopus japonicus[J].Aquaculture Research,2017,48(9):4991-5003.
    [31]Li W X,Feng Z F,Song X J,et al.Cloning,expression and functional characterization of the polyunsaturated fatty acid elongase(ELOVL5)gene from sea cucumber(Apostichopus japonicus)[J].Gene,2016,593(1):217-224.
    [32]Winston G W,Di Giulio R T.Prooxidant and antioxidant mechanisms in aquatic organisms[J].Aquatic Toxicology,1991,19(2):137-161.
    [33]P?rtner H O.Climate variations and the physiological basis of temperature dependent biogeography:systemic to molecular hierarchy of thermal tolerance in animals[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology,2002,132(4):739-761.
    [34]Bagnyukova T V,Storey K B,Lushchak V I.Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation[J].Journal of Thermal Biology,2003,28(1):21-28.
    [35]Hurtado M A,Reza M,Ibarra A M,et al.Arachidonic acid(20:4n-6)effect on reproduction,immunology,and prostaglandin E2 levels in Crassostrea corteziensis(Hertlein,1951)[J].Aquaculture,2009,294(3-4):300-305.
    [36]Tan Q.Effect of dietary n-3/n-6 HUFA on growth performance,body composition,fatty acid composition and immune in turbot(Scophthalmus maximus)[D].Shanghai:Shanghai Ocean University,2017.[谭青.n-3/n-6 HUFA对大菱鲆幼鱼生长、体组成、脂肪酸成分及免疫的影响[D].上海:上海海洋大学,2017.]
    [37]Martinez-álvarez R M,Hidalgo M C,Domezain A,et al.Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity[J].Journal of Experimental Biology,2002,205:3699-3706.
    [38]Wang C Q.The effects of dietary arachidonic acid,α-linolenic acid levels and ratio ofα-linolenic acid to linoleic acid on growth performance,fatty acid composition and lipid accumulation of large size Japanese seabass(Lateolabrax japonicus)[D].Shanghai:Shanghai Ocean University,2016.[王成强.饲料花生四烯酸、亚麻酸含量及亚麻酸/亚油酸比值对大规格鲈鱼生长性能、脂肪酸组成和脂肪沉积的影响[D].上海:上海海洋大学,2016.]
    [39]Zuo R T.Preliminary study about the regulation of dietary fatty acid on immunity and fatty acid metabolism in large yellow croaker(Larmichthys crocea)[D].Qingdao:Ocean University of China,2013.[左然涛.饲料脂肪酸调控大黄鱼免疫力和脂肪酸代谢的初步研究[D].青岛:中国海洋大学,2013.]
    [40]Shi J J,Mi M T,Wei N,et al.Effect of fatty acids composition in different diets on expression of lipid metabolism related genes in rat liver[J].Chongqing Medicine,2012,41(13):1252-1254.[时皎皎,糜漫天,韦娜,等.不同膳食脂肪酸构成对大鼠肝脏脂代谢相关基因表达的影响[J].重庆医学,2012,41(13):1252-1254.]