沙尘对装甲车辆散热器散热性能影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Influence of Sand Dust on Heat Dissipation Performance of Armored Vehicle Radiator
  • 作者:桂勇 ; 刘红彬 ; 周亮 ; 骆清国 ; 司小雨
  • 英文作者:GUI Yong;LIU Hong-bin;ZHOU Liang;LUO Qing-guo;SI Xiao-yu;Academy of Armored Land Forces;Army Armored Forces Acting on Behalf of the Changchun Military Region;
  • 关键词:装甲车辆 ; 沙尘 ; 散热性能 ; 气固两相流
  • 英文关键词:sand dust;;armored vehicle;;heat dissipation performance;;gas-solid two-phase flow
  • 中文刊名:BGTK
  • 英文刊名:Vehicle & Power Technology
  • 机构:陆军装甲兵学院;陆军装甲兵军代局驻长春地区军代室;
  • 出版日期:2018-09-15
  • 出版单位:车辆与动力技术
  • 年:2018
  • 期:No.151
  • 语种:中文;
  • 页:BGTK201803002
  • 页数:7
  • CN:03
  • ISSN:11-4493/TH
  • 分类号:10-15+37
摘要
针对沙尘环境对装甲车辆散热器性能影响较大的问题,搭建了沙尘环境下散热器散热性能试验台,基于正交试验设计法,设计了台架试验方案并进行了性能试验,获取了边界条件.建立了散热器几何参数模型,基于Fluent数值仿真软件,采用离散相模型和相间耦合的SIMPLEC算法,对散热器气侧和水侧流场进行三维数值仿真计算,通过对比实验数据,验证了模型的准确性.基于仿真模型,研究了沙尘颗粒运动轨迹,分析了沙尘影响散热的机理,同时深入研究了不同影响因素(气流速度、沙尘粒径、沙尘浓度)与换热之间的关系,结果表明:随着气体流速和沙尘浓度的增大气侧换热系数增加,而随着沙尘粒径增大气侧换热系数减小.
        In order to calculate the influence of different dust conditions on the heat dissipation performance of armored vehicle radiator,a test bench is built and a heat dissipation performance test is carried out based on the orthogonal experiment design method. Then the computational domain physical model of the radiator is built according to the geometric parameters,and the three-dimensional numerical simulation of the gas and water flow field of a radiator is carried out( based on discrete phase model as well as the SIMPLE scheme for coupling reciprocity between the two phases) by Fluent. The simulation is verified by comparing to the test data. Influence mechanism of sand on heat dissipation performance is analyzed according to the sand movement track which is acquired by the simulation model,and the relation between the air velocities, dust particle size, dust concentration and heat dissipation are analyzed. The conclusion is that the heat transfer coefficient will increase with the rising of the dust particle size.
引文
[1]姚仲鹏,王新国.车辆冷却传热[M].北京:北京理工大学出版社,2001:174-220.
    [2]GUILHERME A O,EDWIN M C C,NIO P B F.Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator[J].Applied Thermal Engineering.2017,111(1):1450-1456.
    [3]张钧享.高机动性运载车辆动力系统[M].北京:中国科学技术出版社,2000.
    [4]FENG J S,DONG H,GAO J Y,etal.Numerical investigation of gas-solid heat transfer process in vertical tank for sinter waste heat recovery[J].Applied Thermal Engineering 2016,107(1):135-143.
    [5]GIDASPOW D.Multiphase Flows and Fluidization[J].Continuum&kinetic theory description,1994,95(3):1-29.
    [6]CHIN B,WANG C,WANG Z W,etal.Investigation of gas-solid two-phase flow across circular cylinders with discrete vortex method[J].Applied Thermal Engineering,2009,29(8):1457-1466.
    [7]司小雨,骆清国,桂勇,等.沙尘掠过圆管气固两相流数值模拟[J].山东工业技术,2017,(12):260-260.
    [8]李顺达.装甲车辆推进系统热管理模拟试验台研究[D].北京:装甲兵工程学院,2014.
    [9]GJB 2005-94装甲车辆空气滤清器通用规范[S].
    [10]王玄静.正交试验设计的应用及分析[J].兰州文理学院学报:自然科学版,2016,30(1):17-22.
    [11]韩莉芬.基于正交试验工程车辆油气悬挂优化设计建模分析[J].机床与液压,2017,45(10):100-104.
    [12]莫尼卡,康宁.基于多孔介质方法的汽车散热器三维计算[C].//中国汽车工程学会年会论文集,2011:424-429.
    [13]黄小辉,毕小平,李贺佳.板翅式机油散热器空气冷却侧阻力性能数值模拟[J].装甲兵工程学院院报,2008,22(5):24-27.
    [14]常贺.基于CFD方法的汽车散热器仿真研究[D].吉林:吉林大学,2009.
    [15]胡岩.管壳式换热器数值模拟研究[D].哈尔滨:哈尔滨工业大学,2007.