甘草素对高糖诱导心肌细胞凋亡的影响及机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Protective effect of Liquiritigenin on H9C2 cardiomyocytes apoptosis induced by high glucose
  • 作者:卓凤巧 ; 黄占红 ; 刘宇捷
  • 英文作者:ZHUO Fengqiao;HUANG Zhanhong;LIU Yujie;Department of Cardiology, Puyang People's Hospital;
  • 关键词:甘草素 ; 高糖 ; 心肌细胞 ; 氧化应激 ; 凋亡
  • 英文关键词:Liquiritigenin;;high glucose;;cardiomyocytes;;oxidative stress;;apoptosis
  • 中文刊名:YLZL
  • 英文刊名:Chinese Journal of Clinical Pharmacology and Therapeutics
  • 机构:河南省濮阳市人民医院心血管内一科;
  • 出版日期:2019-03-06 10:32
  • 出版单位:中国临床药理学与治疗学
  • 年:2019
  • 期:v.24
  • 语种:中文;
  • 页:YLZL201902008
  • 页数:5
  • CN:02
  • ISSN:34-1206/R
  • 分类号:33-37
摘要
目的:研究甘草素对高糖干预下心肌细胞(H9C2)凋亡的影响,探讨其可能机制。方法:培养H9C2细胞,分为正常对照组(Control组),高糖组(HG组),高糖甘草素(终浓度10、30、100 nmol/L)干预组(HG+Liq组)。采用CCK-8法测定各组细胞的存活率;应用Annexin-V/PI双染色流式细胞术检测细胞凋亡率;流式细胞仪检测活性氧(ROS)含量;生化法测定超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量;Western blot法检测凋亡相关蛋白Bcl-2和Bax表达水平。结果:高糖干预使H9C2心肌细胞活力减弱、ROS生成增多、SOD活性下降与MDA增加,并引起细胞凋亡增加、Bcl-2/Bax表达比值降低。与HG组相比,HG+Liq组(终浓度30、100 nmol/L)的细胞存活率显著提高(P<0.05,P<0.05),ROS水平降低(P<0.05,P<0.05),SOD活性升高(P<0.05,P<0.05),MDA含量降低(P<0.05,P<0.05),细胞凋亡率减少(P<0.05,P<0.05)。Western blot结果显示,高糖甘草素(终浓度100 nmol/L)干预组的Bcl-2和Bax表达比值与HG组相比有显著提高(P<0.01)。结论:甘草素通过抑制ROS的产生,抑制氧化应激、抑制心肌细胞凋亡,从而减少高糖所致的H9C2心肌细胞损伤。
        AIM: To evaluate the potential effect and mechanism of Liquiritigenin on apoptosis of H9 C2 cardiomyocytes induced by high glucose. METHODS: H9 C2 cardiomyocytes were cultured and were divided into the following groups: control group, high glucose group(HG group), high glucose with Liquiritigenin treated group(final concertration: 10, 30, 100 nmol/L). CCK-8 assay was used to detected cell viability. Malonaldehyde(MDA) levels and superoxide dismutase(SOD) activity were measured by certain kits. Reactive oxygen species(ROS) production and the percentage of apoptosis of the H9 C2 cardiomyocytes were determined by flow cytometry. Western blot was used to evaluate the expression levels of Bcl-2 and Bax. RESULTS:CCK-8 assay demonstrated that Liquiritigenin(final concertration: 30, 100 nmol/L) significantly enhanced cell viability after high glucose treated(P<0.05, P<0.05). Meanwhile, Liquiritigenin(final concertration: 30, 100 nmol/L) decreased the generation of MDA(P<0.05,P<0.05) and ROS(P<0.05,P<0.05), but increased the activity of SOD(P<0.05,P<0.05). Moreover, Liquiritigenin(final concertration 100 nmol/L) reduced apoptosis rate by high glucose though increasing the ratio of Bcl-2/Bax ratio(P<0.01). CONCLUSION: Liquiritigenin protected H9 C2 cardiacmyocytes from high glucose injury through reducing oxidative stress and apoptosis.
引文
[1] 赵航冯, 景辉, 吴秀萍. 糖尿病心肌病发病机制的研究进展[J]. 国际心血管杂志, 2016, 43(1): 16-18.
    [2] Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways[J]. Pharmacol Ther, 2014, 142(3): 375-415.
    [3] Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease [J]. Apoptosis, 14(4): 536-548.
    [4] Liu J, Viswanadhapalli S, Garcia L, et al. Therapeutic utility of natural estrogen receptor beta agonists on ovarian cancer[J]. Oncotarget, 2017, 8(30): 50002-50014
    [5] Tao W, Dong Y, Su Q, et al. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway [J]. Behav Brain Res, 2016, 308: 177-186.
    [6] 张岩,冯超,韩吉春. 甘草素减轻大鼠离体心肌缺血再灌注损伤作用研究[J]. 天然产物研究与开发, 2017, 29: 1492-1497.
    [7] Xie XW. Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression [J]. Biomed Pharmacother, 2017, 86: 694-704.
    [8] Huang Z, Sheng Y, Chen M, et al. Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system [J]. Toxicol Appl Pharmacol, 2018, 15, 355: 18-27.
    [9] 庸晋,刘畅,曹文君,等. 糖毒性对心肌细胞损伤的研究[J]. 国际心血管杂志,2015, 42 (3): 183-185.
    [10] Selvaraju V, Joshi M, Suresh S, et al. Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease-an overview[J]. Toxicol Mech Methods, 2012, 22(5): 330-335.
    [11] Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070.
    [12] lliamson CL, Dabkowski ER, Baseler WA, et al. Enhanced apoptotic propensity in diabetic cardiac mitochondria:influence of subcellular spatial location[J]. Am J Physiol Heart Circ Physiol, 2010, 298(2): H633-H642.
    [13] Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium Mitochondfial cytochrome C-mediated caspase-3 activation pathway[J]. Diabetes, 2002, 51: 1938-1948.
    [14] Czabotarp E, Guillaume L, Andreas S, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy [J]. Nat Rev Mol Cell Biol, 2014, 15(1): 49.
    [15] Vassort G, Turan B. Protective role of antioxidants in diabetesinduced cardiac dysfunction[J]. Cardiovas Toxicol, 2010, 10(2): 73.