退火温度对车轻量化用热轧高锰钢组织和拉伸性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Annealing Temperature on Microstructure and Tensile Properties of Light-weight Hot Rolled High Manganese Steel
  • 作者:韦玉堂 ; 崔素华
  • 英文作者:WEI Yutang;CUI Suhua;College of Mechanical Engineering, Hebei University of Science and Technology;
  • 关键词:高锰钢 ; 退火温度 ; 组织 ; 拉伸性能
  • 英文关键词:high manganese steel;;annealing temperature;;microstructure;;tensile properties
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:河北科技大学机械工程学院;
  • 出版日期:2019-05-25 07:03
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.512
  • 语种:中文;
  • 页:SJGY201910059
  • 页数:4
  • CN:10
  • ISSN:61-1133/TG
  • 分类号:232-234+238
摘要
采用EBSD、TEM等试验测试方法分析了退火温度对车轻量化用热轧高锰钢组织和拉伸性能的影响。结果表明:经过热轧退火处理得到的铁素体与奥氏体晶粒都表现为等轴状的外形特征。当退火温度上升后,奥氏体晶粒尺寸增大,铁素体晶粒尺寸降低。高锰钢试样组织中未出现再结晶现象,在铁素体晶粒中存在很低的位错密度。拉伸过程中,高锰钢试样中的奥氏体稳定性对马氏体转变过程造成了显著影响,奥氏体的稳定性越小,其转变为马氏体的速率就越快。当真应变为0.01时,在奥氏体晶粒中形成了许多层错,未生成马氏体组织。随着应变量增大到0.1时,很多奥氏体组织转变成了马氏体。
        The effects of annealing temperature on the microstructure and tensile properties of the hot rolled high manganese steel for light weight were analyzed by means of EBSD, TEM. The results show that, both ferrite and austenite grains obtained by hot rolling annealing are equiaxed. When the annealing temperature increases, the austenite grain size increases and ferrite grain size decreases. There is no recrystallization in the microstructure of high manganese steel, and there is a low dislocation density in ferrite grain. In tensile process, the austenite stability in high manganese steel samples has a significant effect on martensitic transformation process. The smaller the stability of austenite, the faster the transformation rate of austenite into martensite. When the true strain is 0.01, many faults are formed in the austenite grains, and no martensitic structure is formed. When the strain increases to 0.1, many austenitic structures are transformed into martensite.
引文
[1]Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-inducedplasticity steel with medium manganese content[J]. Acta Mater.,2015,84:229-235.
    [2]井腾飞,李佳颀,丁志敏.热成型方法对高碳高锰钢拉伸硬化行为的影响[J].热加工工艺,2018,47(2):97-100.
    [3]高波,杨攀,王剑.时效处理对高锰钢组织及耐磨性能的影响[J].热加工工艺,2016,45(2):193-195.
    [4]朱恺,伍翠兰,谢盼,等.奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J].金属学报,2018,54(10):1387-1398.
    [5]李俊澎,杜鑫,张洋,等.时效时间对Fe-Al-Mn-C轻量高锰钢组织以及力学性能的影响[J].金属热处理,2018,43(8):142-147.
    [6]李俊澎,杜鑫,崔烨,等.固溶处理对轻量高锰钢组织及力学性能的影响[J].金属热处理,2018,43(7):109-114.
    [7]林颖,王强,杨平.高锰钢高速冲击时剪切区TRIP行为的准原位分析[J].工程科学学报, 2018,40(6):703-713.
    [8]蔡李,苏钰,毛邈,等.层错能对TRIP/TWIP钢变形机制和力学性能的影响[J].热加工工艺, 2015,44(6):20-23.
    [9]裘荣鹏.高锰钢辙叉与U71Mn钢轨闪光对焊接头组织分析[J].热加工工艺,2014,43(23):57-60.
    [10]闫华,张培磊,于治水.改性高锰钢裂纹萌生与扩展的原位拉伸研究[J].热加工工艺,2014,43(2):64-66.
    [11]Liang Z Y, Wang X, Huang W, et al.Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel[J].Acta Mater.,2015,122(88):170-177.
    [12]Hazra S S, Pereloma E V, Gazder A A.Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel[J].Acta Mater.,2011,118(59):4015-4021.
    [13]孙朝阳,黄杰,郭宁,等.基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J].金属学报,2014,66(50):1115-1121.
    [14]Liu J, Zhu G H, Mao W M, et al.Modeling of critical grain size for shifting plasticity enhancement to decrease by refining grain size[J].Mater. Sci. Eng.,2014,68(607):302-308.