MPS方法模拟三维圆柱形液舱晃荡问题
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of sloshing in three-dimensional cylindrical tank by MPS method
  • 作者:田鑫 ; 万德成
  • 英文作者:Tian Xin;Wan Decheng;School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University;State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;
  • 关键词:液舱晃荡 ; 圆柱形液舱 ; 移动粒子半隐式方法 ; MPSGPU-SJTU求解器
  • 英文关键词:tank sloshing;;cylindrical liquid tank;;Moving Particle Semi-implicit(MPS)method;;MPSGPU-SJTU solver
  • 中文刊名:JCZG
  • 英文刊名:Chinese Journal of Ship Research
  • 机构:上海交通大学船舶海洋与建筑工程学院;上海交通大学海洋工程国家重点实验室;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2019-03-21 14:25
  • 出版单位:中国舰船研究
  • 年:2019
  • 期:v.14;No.80
  • 基金:国家自然科学基金资助项目(51879159,51490675,11432009,51579145);; 长江学者奖励计划资助项目(T2014099);; 上海高校东方学者特聘教授岗位跟踪计划资助项目(2013022);; 上海市优秀学术带头人计划资助项目(17XD1402300)
  • 语种:中文;
  • 页:JCZG201903015
  • 页数:6
  • CN:03
  • ISSN:42-1755/TJ
  • 分类号:118-123
摘要
[目的]为了研究在单自由度横荡激励下,激励频率对液舱晃荡现象的影响,将移动粒子半隐式(MPS)方法应用于水平圆柱形液舱晃荡问题。[方法]基于改进的MPS方法和GPU并行加速技术,课题组将自主开发的无网格粒子法求解器MPSGPU-SJTU应用到三维圆柱形液舱晃荡问题中。首先,进行模型验证,对激励频率为一阶固有频率时的晃荡现象进行模拟。然后,在此基础上进行不同激励频率下的晃荡现象计算,并将激励频率在1.2 Hz的模拟结果与实验结果进行对比。最后,在此基础上模拟不同激励频率下液舱的横荡运动。[结结果]结果显示,MPSGPU-SJTU求解器能够较好地模拟圆柱形液舱内的液体晃荡现象,也能较为精确地计算液舱受力;当激励频率在固有频率附近时,晃荡现象十分剧烈,当远离固有频率时,晃荡会迅速变弱,液舱受力也随之迅速减小。[结论]所得模拟结果能够为圆柱形液舱的设计应用提供有效参考。
        [Objectives]This paper applies Moving Particle Semi-implicit(MPS) method to solve the sloshing problem of horizontal cylindrical tank,so as to study the influence of excitation frequency on sloshing phenomenon under single freedom degree sloshing excitation.[Methods]Based on the improved MPS method and GPU parallel acceleration technology,our group developed the meshless particle method solver MPSGPU-SJTU and applied the solver to the sloshing problem in a three-dimensional cylindrical tank. Firstly, the model is verified and the sloshing phenomenon is simulated when the excitation frequency is the first order natural frequency. Based on this,the sloshing phenomenon under different excitation frequencies is calculated. The simulated excitation frequency of 1.2 Hz is compared to the test results. Finally, the sloshing movement of cylindrical tank is simulated under different excitation frequencies.[Results]The results show that MPSGPU-SJTU solver can excellently simulate the liquid sloshing phenomenon in the cylindrical tank,and can also accurately calculate the force on the tank.When the excitation frequency is near the natural frequency,the sloshing phenomenon is very severe.When the excitation frequency is far from the natural frequency,the sloshing will weaken rapidly and the force on the tank will decrease rapidly.[Conclusions]The simulation results can provide valuable reference for the design and application of cylindrical tanks.
引文
[1]张书谊,段文洋.矩形液舱横荡流体载荷的Fluent数值模拟[J].中国舰船研究,2011,6(5):73-77.Zhang S Y,Duan W Y.Numerical simulation of sloshing loads on rectangular tank based on Fluent[J].Chinese Journal of Ship Research,2011,6(5):73-77(in Chinese).
    [2]Kabayashi N,Mieda T,Shibata H,et al.A study of the liquid slosh response in horizontal cylindrical tanks[J].Journal of Pressure Vessel Technology,1989,111(1):32-38.
    [3]Faltinsen O M,Timokha A N.Analytically approximate natural sloshing modes for a spherical tank shape[J].Journal of Fluid Mechanics,2012,703:391-401.
    [4]Gavrilyuk I,Lukovsky I,Trotsenko Y,et al.Sloshing in a vertical circular cylindrical tank with an annular baffle.Part 1:Linear fundamental solutions[J].Journal of Engineering Mathematics,2006,54(1):71-88.
    [5]刘戈,林焰,管官,等.LNG独立C型液舱晃荡特性试验研究[J].大连理工大学学报,2017,57(5):467-475.Liu G,Lin Y,Guan G,et al.Experimental study of sloshing pattern on LNG independent C type tank[J].Journal of Dalian University of Technology,2017,57(5):467-475(in Chinese).
    [6]刘戈,林焰,管官,等.LNG独立C型舱晃荡的频域共振特性试验研究[J].浙江大学学报(工学版),2017,51(12):2392-2398.Liu G,Lin Y,Guan G,et al.Experimental study on frequency domain resonant characteristic of sloshing in LNG independent type C tank[J].Journal of Zhejiang University(Engineering Science),2017,51(12):2392-2398(in Chinese).
    [7]Zhang Y X,Wan D C.Comparative study of MPSmethod and level-set method for sloshing flows[J].Journal of Hydrodynamics,2014,26(4):577-585.
    [8]张雨新,万德成,日野孝则.MPS方法数值模拟液舱晃荡问题[J].海洋工程,2014,32(4):24-32.Zhang Y X,Wan D C,Hino T.Application of MPSmethod in liquid sloshing[J].The Ocean Engineering,2014,32(4):24-32(in Chinese).
    [9]张驰,张雨新,万德成.SPH方法和MPS方法模拟溃坝问题的比较分析[J].水动力学研究与进展(A辑),2011,26(6):736-746.Zhang C,Zhang Y X,Wan D C.Comparative study of SPH and MPS methods for numerical simulations of dam breaking problems[J].Journal of Hydrodynamics(Ser.A),2011,26(6):736-746(in Chinese).
    [10]张雨新.改进的MPS方法及其三维并行计算研究[D].上海:上海交通大学,2014.Zhang Y X.Improved MPS method and its 3D parallel computation[D].Shanghai:Shanghai Jiao Tong University,2014(in Chinese).
    [11]Tanaka M,Masunaga T.Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J].Journal of Computational Physics,2010,229(11):4279-4290.
    [12]Lee B H,Park J C,Kim M H,et al.Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J].Computer Methods in Applied Mechanics and Engineering,2011,200(9/10/11/12):1113-1125.121