准东大井矿区巨厚煤层开采覆岩含水层渗透特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the permeability of overlying aquifer associated with the mining of the super-thick coal seam in Dajing mining area of eastern Junggar coalfield
  • 作者:曾强 ; 李根生 ; 杨洁 ; 龙辉 ; 高坡
  • 英文作者:ZENG Qiang;LI Gensheng;YANG Jie;ZHAO Longhui;GAO Po;School of Resource & Environment Sciences,Xinjiang University;Institute for Arid Ecology & Environment,Xinjiang University;Key Laboratory of Oasis Ecology of Ministry of Education;
  • 关键词:准东矿区 ; 巨厚煤层开采 ; 覆岩含水层 ; 渗透特性 ; 数值模拟
  • 英文关键词:eastern Junggar coalfield;;mining of super-thick coal seam;;overlying aquifer;;permeability;;numerical simulation
  • 中文刊名:ZGKA
  • 英文刊名:China Mining Magazine
  • 机构:新疆大学资源与环境科学学院;新疆大学干旱生态环境研究所;绿洲生态教育部重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:中国矿业
  • 年:2019
  • 期:v.28;No.261
  • 基金:新疆国际合作项目资助(编号:2018E01011)
  • 语种:中文;
  • 页:ZGKA201905024
  • 页数:9
  • CN:05
  • ISSN:11-3033/TD
  • 分类号:119-127
摘要
基于准东大井矿区赋岩柱状及岩性,构建了赋岩物理模型与数值模型。基于该模型,开展了赋岩位移与含水层渗透特性的模拟研究。结果表明:开采首分层覆岩含水层各测点位移随开挖长度的增加而增加;测点1~#物理模拟开挖至70~250m及数值模拟开挖至100~300m时,位移呈快速增加,其后位移变化稳定;测点2~#物理模拟开挖至70~420m及数值模拟开挖至250~500m时,位移呈快速增加,其后位移稳定;测点3~#物理模拟开挖至430~600m及数值模拟开挖至450~600m时,位移快速增加。物理相似模拟及数值模拟各测点变化趋势基本一致;覆岩含水层各测点有效应力与孔隙介质渗透率呈负相关;覆岩含水层各测点有效应力与裂隙介质渗透率呈正相关。开挖1~5分层渗透率大小为:测点1~#>测点3~#>测点2~#;开挖6~8分层渗透率大小为:测点3~#>测点1~#>测点2~#;覆岩含水层渗透特性与覆岩孔隙-裂隙双重介质动态变化特征有关,与采动覆岩应力变化具有耦合效应。
        Based on the deposition of overlying rocks and their properties,the authors establish the physical model and the consequent numerical model.With these two models,the simulation of overlying rocks movement and the permeable characteristics of aquifers are investigated.The results show that the displacement of referring points from the physical similar experiment has the same change as that from numerical simulation for the mining of the first sub-layer of the super-thick coal seam in eastern Junggar coalfield.During mining of the first sub-layer,the displacement of reference point 1~#increases quickly from the mining period of 70-250 mfor physical experiment and 100-300 mfor numerical simulation respectively,then stays stable.The displacement of reference point 2~#increases quickly from the mining period of 70-420 m for physical experiment and 250-500 mfor numerical simulation.And the displacement of reference point3~#increases quickly from the mining period of 430-600 mfor physical experiment and 450-600 mfor numerical simulation.For the porous medium,a negative correlation exists between the permeability and the effective stress for each reference point of overlying aquifer.For the fracture,apositive correlation exists between the fracture permeability and the effective stress for each reference point of overlying aquifer.Further simulation shows that the values of permeability with reference points present an order as 1~#>3~#>2~#during the stage of mining No.1 sub-layer to No.5 sub-layer one by one.Meanwhile,the values of permeability of reference points also demonstrate an order as 3~#>1~#>2~#.From this study,it's obvious that a coupling effect exist among the effective stress,the porous permeability and the fracture permeability of aquifers.
引文
[1]曾强,李根生,董敬宣,等.新疆煤炭资源开采典型生态环境问题及对策[J].矿业安全与环保,2017,44(1):106-110.ZENG Qiang,LI Gensheng,DONG Jingxuan,et al.Typical ecological and environmental issues and countermeasures in coal mining in Xinjiang region[J].Mining Safety&Environmental Protection,2017,44(1):106-110.
    [2]曾强,李根生,赵龙辉,等.准东大井矿区巨厚煤层开采覆岩裂隙分布特征[J].中国矿业,2018,27(11):109-115.ZENG Qiang,LI Gensheng,ZHAO Longhui,et al.Characteristics of the distribution of overlying rock fractures associated with the mining of super-thick coal seam in eastern Junggar coalfield[J].China Mining Magazine,2018,27(11):109-115.
    [3]李根生,曾强,董敬宣,等.准东矿区邻近奇台绿洲地下水位变化趋势分析[J].中国矿业,2017,26(5):148-153.LI Gensheng,ZENG Qiang,DONG Jingxuan,et al.Analysis of the change of ground water level in Qitai oasis nearby eastern Junggar coalfield[J].China Mining Magazine,2017,27(11):148-153.
    [4]李根生,曾强,赵龙辉,等.巨厚煤层开采覆岩含水层破坏模拟:以准东大井矿区为例[J].中国矿业,2018,27(3):104-109.LI Gensheng,ZENG Qiang,ZHAO Longhui,et al.Simulation of the impact of super-thick coal seam mining on overlying aquifers:a case study of Dajing mining area of eastern Junggar coalfield[J].China Mining Magazine,2018,27(3):104-109.
    [5]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报,2003,22(5):742-746.PENG Suping,MENG Zhaoping,WANG Hu,et al.Testing study on pore ratio and permeability of sandstone under different confining pressures[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(5):742-746.
    [6]许家林,朱卫兵,王晓振.松散承压含水层下采煤突水机理与防治研究[J].采矿与安全工程学报,2011,28(3):333-339.XU Jialin,ZHU Weibing,WANG Xiaozhen.Study on waterinrush mechanism and prevention during coal mining under unconsolidated confined aquifer[J].Journal of Mining and Safety Engineering,2011,28(3):333-339.
    [7]杨天鸿,唐春安,朱万成,等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.YANG Tianhong,TANG Chun'an,ZHU Wancheng,et al.Coupling analysis of seepage and stresses in rock failure process[J].Chinese Journal of Geotechnical Engineering,2001,23(4):489-493.
    [8]孟召平,张娟,师修昌,等.煤矿采空区岩体渗透性计算模型及其数值模拟分析[J].煤炭学报,2016,41(8):1997-2005.MENG Zhaoping,ZHANG Juan,SHI Xiuchang,et al.Calculation model of rock mass permeability in coal mine goaf and its numerical simulation analysis[J].Journal of China Coal Society,2016,41(8):1997-2005.
    [9]李利平,李术才,李树忱,等.松散承压含水层下采煤的流固耦合模型试验与数值分析研究[J].岩土工程学报,2013,35(4):679-690.LI Liping,LI Shucai,LI Shuchen,et al.Numerical analysis and fluid-solid coupling model tests of coal mining under loose confined aquifer[J].Chinese Journal of Geotechnical Engineering,2013,35(4):679-690.
    [10]王金安,魏现昊,纪洪广.双承压水间采煤顶底板破断及渗流规律[J].煤炭学报,2012,37(6):891-897.WANG Jin'an,WEI Xianhao,JI Hongguang.Rupture and seepage law of roof-floor strata caused by coal mining between double-bearing aquifers[J].Journal of China Coal Society,2012,37(6):891-897.
    [11]潘力.基于UDEC分析平台的裂隙岩体渗流分析[D].鞍山:辽宁科技大学,2016.
    [12] DAVID C,WONG T F,ZHU W,et al.Laboratory measurement of compaction-induced permeability change in porous rocks:implications for the generation and maintenance of pore pressure excess in the crust[J].Pure&Applied Geophysics,1994,143(1-3):425-456.
    [13] PAN Z,CONNELL L D,CAMILLERI M.Laboratory characterization of coal reservoir permeability for primary and enhanced coalbed methane recovery[J].International Journal of Coal Geology,2010,82(3):252-261.
    [14]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [15] METWALLY Y M,SONDERGELD C H.Measuring low permeabilities of gas-sands and shales using apressure transmission technique[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(7):1135-1144.
    [16] GHABEZLOO S,SULEM J,SAINT-MARC J.Evaluation of apermeability:porosity relationship in a low-permeability creeping material using a single transient test[J].International Journal of Rock Mechanics&Mining Sciences,2009,46(4):761-768.
    [17] DONG J J,HSU J Y,WU W J,et al.Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A[J].International Journal of Rock Mechanics&Mining Sciences,2010,47(7):1141-1157.
    [18] ZHENG J,ZHENG L,LIU H H,et al.Relationships between permeability,porosity and effective stress for low-permeability sedimentary rock[J].International Journal of Rock Mechanics&Mining Sciences,2015,78:304-308.
    [19]张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究[J].煤炭学报,1997,22(5):35-39.ZHANG Jincai,LIU Tianquan,ZHANG Yuzhuo.Study on the permeability of fractured rock mass[J].Journal of China Coal Society,1997,22(5):35-39.
    [20] BAI M,MENG F,ELSWORTH D,et al.Numerical modeling of stress-dependent permeability[J].International Journal of Rock Mechanics&Mining Sciences,1997,34(3-4):44.e1-44.e14.
    [21]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467.XU Jialin,QIAN Minggao.Method to distinguish key strata in overburden[J].Journal of China University of Mining and Technology,2000,29(5):463-467.