橡椀单宁对Q235碳钢在0.5 mol/L HCl溶液中的缓蚀作用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Inhibition Performance of Valonia Tannin for Q235 Carbon Steel in 0.5 mol/L HCl
  • 作者:赵保华 ; 徐洪鑫 ; 张文华 ; 石碧
  • 英文作者:ZHAO Baohua;XU Hongxin;ZHANG Wenhua;SHI Bi;National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University;The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University;
  • 关键词:橡椀单宁 ; 碳钢 ; 缓蚀剂 ; 电化学阻抗 ; 分子模拟
  • 英文关键词:valonia tannin;;Q235 carbon steel;;inhibitor;;EIS;;molecular simulation
  • 中文刊名:FSFJ
  • 英文刊名:Corrosion Science and Protection Technology
  • 机构:四川大学制革清洁技术国家工程实验室;四川大学皮革化学与工程教育部重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:腐蚀科学与防护技术
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金(21776185)~~
  • 语种:中文;
  • 页:FSFJ201902014
  • 页数:7
  • CN:02
  • ISSN:21-1264/TQ
  • 分类号:87-93
摘要
采用失重实验、极化曲线、电化学阻抗、扫描电镜及分子模拟等方法,研究了橡椀单宁对Q235碳钢在0.5 mol/L HCl溶液中的缓蚀性能,并探讨了其缓蚀机理。结果表明,当橡椀单宁浓度为6 g/L,橡椀单宁对Q235碳钢的缓蚀率可达96.46%。电化学实验研究表明,加入橡椀单宁后,腐蚀电流减小接近1个数量级,电荷转移电阻增大近7倍。扫描电镜观察可见,橡椀单宁在碳钢表面形成一层保护膜。吸附热力学分析表明,橡椀单宁在碳钢表面发生物理和化学混合型吸附作用,且符合Langmuir等温吸附方程。分子模拟研究表明,橡椀单宁以平面的形式稳定吸附在碳钢表面。
        The corrosion inhibition performance of valonia tannin for Q235 carbon steel in 0.5 mol/L HCl solution was investigated by means of mass loss experiment, polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM) as well as molecular simulation. Results showed that in the solution with a dose of 6 g/L valonia tannin, the corrosion inhibition efficiency could reach 96.46%. While the corrosion current of the carbon steel electrode decreased by one order of magnitude and the charge transfer resistance increased up to 7 times of that in the blank solution of 0.5 mol/L HCl. SEM observation revealed that a colorless and compact protective film could form on the steel in the acid solution with the addition of valonia tannin. Valonia tannin was adsorbed on Q235 carbon steel surface through chemisorption and physisorption, which could be well fitted by the Langmuir adsorption isotherm. Furthermore, molecular simulation revealed that the valonia tannin was absorbed as lamelliform lamellae on the surface of carbon steel.
引文
[1] El Haleem S M A, El Wanees S A, Bahgat A. Environmental factors affecting the corrosion behaviour of reinforcing steel. VI. Benzotri‐azole and its derivatives as corrosion inhibitors of steel[J]. Corros.Sci., 2014, 87:321
    [2] Ansari K R, Quraishi M A, Singh A. Schiff’s base of pyridyl substi‐tuted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution[J]. Corros. Sci., 2014, 79:5
    [3] Ahamad I, Prasad R, Quraishi M A. Inhibition of mild steel corro‐sion in acid solution by Pheniramine drug:Experimental and theo‐retical study[J]. Corros. Sci., 2010, 52:3033
    [4] Zaferani S H, Sharifi M, Zaarei D, et al. Application of eco-friendly products as corrosion inhibitors for metals in acid pickling process‐es-A review[J]. J. Environ. Chem. Eng., 2013, 1:652
    [5] Zhang Z G, Ma Q L. Application of modified tannic inhibitor in the iron relics[J]. Surf. Technol., 2017, 46(2):27(张治国,马清林.单宁酸复配缓蚀剂在铁质文物上的应用研究[J].表面技术, 2017, 46(2):27)
    [6] Chen Z H, Liu W J, Chen H H, et al. Preparation of multifunctional waterborne rust-tolerant anti-rust coating[J]. Electroplat. Finish.,2013, 32(12):68(陈中华,刘文杰,陈海洪等.水性多功能带锈防锈涂料的研制[J].电镀与涂饰, 2013, 32(12):68)
    [7] Li Y H, Liu Y X, Xu Y. Preparation of novel waterborne antirust coatings for rusty substrate[J]. Paint Coat. Ind., 2017, 47(7):45(李艳华,刘迎新,许烨.新型水性带锈防锈涂料的研究[J].涂料工业, 2017, 47(7):45)
    [8] Huang H, Ma D L, Zhang L, et al. The latest progress in waterborne over-rust&conversion coatings[J]. Mod. Paint Finish., 2010, 13(10):33(黄河,马道林,张丽等.水性带锈转锈涂料最新研究进展[J].现代涂料与涂装, 2010, 13(10):33)
    [9] Dabrowski A. Adsorption--from theory to practice[J]. Adv. Colloid Interface Sci., 2001, 93:135
    [10] Yilmaz N, Fitoz A, Ergun?, et al. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino)methyl)phenol as a corrosion inhibitor for mild steel in a highly acidic environment[J]. Corros. Sci., 2016, 111:110
    [11] Herrag L, Hammouti B, Elkadiri S, et al. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives:Experimental and theoretical investigations[J]. Corros. Sci., 2010, 52:3042
    [12] Shi B, Di Y. Plant Polyphenol[M]. Beijing:Science Press,2000:10(石碧,狄莹.植物多酚[M].北京:科学出版社, 2000:10)
    [13] Pu S Z, Wang Y N, He Q, et al. Molecular level understanding of the role of aldehyde in vegetable-aldehyde–collagen cross-link‐ing reaction[J]. Int. J. Quantum Chem., 2012, 112:2832
    [14] Bouanis M, Tourabi M, Nyassi A, et al. Corrosion inhibition per‐formance of 2, 5-bis(4-dimethylaminophenyl)-1, 3, 4-oxadiazole for carbon steel in HCl solution:Gravimetric, electrochemical and XPS studies[J]. Appl. Surf. Sci., 2016, 389:952
    [15] Qu Q, Jiang S, Bai W, et al. Effect of ethylenediamine tetraacetic acid disodium on the corrosion of cold rolled steel in the presence of benzotriazole in hydrochloric acid[J]. Electrochim. Acta, 2007,52:6811
    [16] Quartarone G, Ronchin L, Vavasori A, et al. Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydro‐chloric acid solutions[J]. Corros. Sci., 2012, 64:82
    [17] Amin M A, El-Rehim S S A, El-Sherbini E E F, et al. The inhibi‐tion of low carbon steel corrosion in hydrochloric acid solutions by succinic acid:Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies[J]. Electrochim. Acta, 2007, 52:3588
    [18] Sin H L Y, Umeda M, Shironita S, et al. Adenosine as corrosion in‐hibitor for mild steel in hydrochloric acid solution[J]. Res. Chem.Intermed., 2017, 43:1919
    [19] Yadav D K, Maiti B, Quraishi M A. Electrochemical and quantum chemical studies of 3, 4-dihydropyrimidin-2(1H)-ones as corro‐sion inhibitors for mild steel in hydrochloric acid solution[J]. Cor‐ros. Sci., 2010, 52:3586
    [20] Obot I B, Obi-Egbedi N O, Ebenso E E, et al. Experimental, quan‐tum chemical calculations, and molecular dynamic simulations in‐sight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl)oxazolo[5, 4-f][1, 10] phenanthroline on mild steel[J]. Res.Chem. Intermed., 2013, 39:1927
    [21] Saha S K, Murmu M, Murmu N C, et al. Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its cor‐rosion inhibition effectiveness on target specific mild steel in the acidic medium:A combined DFT and MD simulation study[J]. J.Mol. Liq., 2016, 224:629
    [22] Yadav M, Sarkar T K, Obot I B. Carbohydrate compounds as green corrosion inhibitors:Electrochemical, XPS, DFT and molec‐ular dynamics simulation studies[J]. RSC Adv., 2016, 6:110053