TWP-ICE试验期间一次热带深对流过程的拉格朗日输送特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Lagrangian transportation in a tropical deep convective process during TWP-ICE
  • 作者:庆涛 ; 沈新勇 ; 王卫国 ; 黄文彦
  • 英文作者:QING Tao;SHEN Xin-Yong;WANG Wei-Guo;HUANG Wen-Yan;Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science and Technology;Key Laboratory of Cloud-Precipitation Physics and Sever Storms,Institute of Atmospheric Physics,Chinese Academy of Sciences;National Centers for Environmental Prediction,National Oceanic and Atmospheric Administration;
  • 关键词:热带深对流 ; 卷云砧 ; 水凝物输送 ; 拉格朗日轨迹 ; FLEXPART扩散模式
  • 英文关键词:Tropical deep convection;;Anvil cirrus;;Hydrometeor transportation;;Lagrangian trajectory;;FLEXPART dispersion model
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:南京信息工程大学气象灾害教育部重点实验室;中国科学院大气物理研究所云降水物理与强风暴重点实验室;美国国家海洋大气总署环境预测中心;
  • 出版日期:2014-08-15
  • 出版单位:地球物理学报
  • 年:2014
  • 期:v.57
  • 基金:国家重点基础研究发展计划973项目(2013CB430103,2011CB403405);; 国家自然科学基金项目(41075039,41375058);; 江苏高校优势学科建设工程资助项目(PAPD);; 江苏高等学校优秀科技创新团队计划项目(2012)资助
  • 语种:中文;
  • 页:DQWX201408006
  • 页数:13
  • CN:08
  • ISSN:11-2074/P
  • 分类号:54-66
摘要
本文使用高分辨率WRFV3.4.1模式对TWP—ICE试验期间的一次热带深对流过程进行了数值模拟,利用第四重嵌套每五分钟输出一次的模拟资料对对流系统的上升气流质量通量廓线特征进行了分析,并结合FLEXPART拉格朗日粒子扩散模式对热带深对流系统进行拉格朗日轨迹分析.质量通量廓线特征及拉格朗日轨迹的分析结果表明,在条件不稳定层顶附近便有部分水凝物被输送出深对流系统.深对流系统中的水凝物主要沿环境引导气流向深对流下游方向输送.由于受低层风场扰动的影响,少量的水凝物被输送到深对流系统的上游.深对流系统中的水凝物向其下游方向输送的最远距离为200~300 km,并约有10%~20%的水凝物对对流系统下游50~150 km附近卷云砧的形成产生影响,其影响的时间尺度约为4~6 h.
        High resolution mesoscale model WRFV3.4.1 is used to simulate the deep convective process during TWP-ICE.Simulation data from the forth nested domain outputted every five minutes is employed to analyze the characteristics of an updraft mass flux profile and the trajectories of convective transportation with the FLEXPART Lagrangian dispersion model.Analyses of Lagrangian characteristics of hydrometeor transportation and mass flux vertical variation show that around the top of conditional instability,some hydrometeor has been detrained from the deep convective system.Convective hydrometeor is conveyed by steering current from the deep convective system to their downstream.However,influenced by low level wind disturbance,some hydrometeor is also conveyed to upstream.The largest distance over which the hydrometeor is transported from the deep convective system to the downstream is about200~300 km.About 10%~20%of the hydrometeor has an important influence on the anvil area50~150 km downward from the deep convective system,of which the time scale is 4~6 hours.
引文
Chen B.Xu X D,Bian J C.et al.2010.Sources,pathways and timescales for the troposphere to stratosphere transport over Asian Monsoon Regions in Boreal Summer.Chinese Journal of Atmospheric Sciences(in Chinese),34(3):495-505.
    Chen B,Xu X D,Yang S,et al.2012.On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer.Chinese J.Geophys.(in Chinese).55(2):406-513.
    Clothiaux E E,Ackerman T P,Mzce G G,et al.2000.Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites.J.Appl.Meteor.,39(5):645-665.
    Davies L,Jakob C,Cheung K,et al.2013.A single-column model ensemble approach applied lo the TWP-ICE experiment.J.Geophys.Res.,118(12):6544-6563,doi:10.1002/jgrd.50450.
    Forster C,Stohl A.2007.Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation.J.Appl.Meteor.Climatol.,46(4):403-422.
    Frederick K,Schumacher C.2008.Anvil Characteristics as Seen by C-POL during the Tropical Warm Pool International Cloud Experiment(TWP-ICE).Man.Wea.Rev.,136(1):206-222.
    Fridlind A M,Ackerman A S,Chaboureau J P,et al.2012.A comparison of TWP-ICE observational data with cloud-resolving model results.J.Geophys.Res.,117(D5):D05204,doi:10.1029/2011JD016595.
    Gao S T,Yang S,Chen B.2010.Diagnostic analyses of dry intrusion and nonuniformly saturated instability during a rainfall event.J.Geophys.Res.,115(D2):D02102,doi:10.1029/2009JD012467.
    Houze R A.1993.Cloud Dynamics.New York;Academic Press,573.
    Jin L J,Yin Y,Wang P X,et al.2007.Numerical modeling of tropical deep convective anvil and sensitivity test on its response to changes in the cloud condensation nuclei concentration.Chinese Journal of Atmospheric Sciences(in Chinese),31(5):793-804.
    Li J P,Yin Y,Jin L J,et al.2009.A numerical study on deep tropical convection using WRF model.Journal of Tropical Meteorology(in Chinese),25(3):287-294.
    Li L J,Xie X,Wang B,et al.2012.Evaluating the Performances of GAMIL1.0 and GAMIL2.0 during TWP-ICE with CAPT.Atmos.Oceanic Sci.Lett.,5(1):38-42.
    Lin Y L,Donner L J,Petch J,et al.2012.TWP-ICE global atmospheric model intercomparison:Convection responsiveness and resolution impact.J.Geophys.Res.,117(D9):D09111,doi:10.1029/2011JD017018.
    Luo Z Z,Rossow W B.2004.Characterizing tropical cirrus life cycle,evolution,and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations.J.Climate,17(23):4541-4563.
    Massie S,Gettelman A,Randel W,et al.2002.Distribution of tropical cirrus in relation to convection.J.Geophys.Res.,107(D21):AAC19-1-AAC19-16,doi:10.1029/2001JD001293.
    May P T,Mather J H,Vaughan G,et al.2008.The tropical warm pool international cloud experiment.Bull.Amer.Meteor.Soc.,89(5):629-645.
    Mrowiec A A,Rio C,Fridlind A M,et al.2012.Analysis of cloudresolving simulations of a tropical mesoscale convective system observed during TWP-ICE:Vertical fluxes and draft properties in convective and stratiform regions.J.Geophys.Res.,117(D19):D19201,doi:10.1029/2012JD017759.
    Rickenbach T,Kucera P,Gentry M,et al.2008.The relationship between anvil clouds and convective cells:A case study in south Florida during crystal-face.Man.Wea.Rev.,136(10):3917-3932.
    Sheng P X,Mao J T,Li J G,et al.2003.Atmospheric Physics(in Chinese).Beijing:Peking University Press,310-352.
    Stohl A,Forster C,Frank A,et al.2005.Technical note:The Lagrangian particle dispersion model FLEXPART version 6.2.Atmos.Chem.Phys.,5(9):2461-2474.
    Varble A,Fridlind A M,Zipser E J,et al.2011.Evaluation of cloud-resolving model intercomparison simulations using TWPICE observations:Precipitation and cloud structure.J.Geophys.Res.,116(D12):D12206,doi:10.1029/2010JD015180.
    Wang W G,Liu X H,Xie S C,et al.2009.Testing ice microphysics parameterizations in the NCAR community atmospheric model version 3 using tropical warm pool-international cloud experiment data.J.Geophys.Res.,114(D14):D14107,doi:10.1029/2009J D14107.
    Wang W G,Liu X H.2009.Evaluating deep updraft formulation in NCAR CAM3 with high-resolution WRF simulations during ARM TWP-ICE.Geophys.Res.Lett.,36(4):L04701,doi:10.1029/2008GL036692.
    Wang Y,Long C N,Leung L R,et al.2009.Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment(TWPICE),Darwin,2006.J.Geophys.Res.,114(D21):D21203,doi:10.1029/2009JD012729.
    Wu J B,Del Genio A D,Yao M S,et al.2009.WRF and GISS SCM simulations of convective updraft properties during TWPICE.J.Geophys.Res.,114(D4):D04206,doi:10.1029/2008JD010851.
    Zhang G J,McFarlane N A.1995.Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general-circulation model.Atmos.-Ocean,33(3):407-446.
    陈斌,徐祥德,卞建春等.2010.夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究.大气科学,34(3):495—505.
    陈斌,徐祥德,杨帅等.2012.夏季青藏高原地区近地层水汽进入平流层的特征分析.地球物理学报,55(2):406—513.
    金莲姬,银燕,王盘兴等.2007.热带深对流云砧数值模拟及云凝结核数浓度对其影响的初步试验.大气科学,31(5):793—804.
    李嘉鹏,银燕,金莲姬等.2009.WRF模式对澳洲一次热带深对流系统的模拟研究.热带气象学报,25(3):287—294.
    盛裴轩,毛节泰,李建国等.2003.大气物理学.北京:北京大学出版社,310-352.