景观型泻湖水体交换特性及污染物输运扩散规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着城市现代化的发展和人们生活水平的不断提高,水景观逐渐融入了人们的生活,城市滨水区景观开发逐渐成为了一个新的热点。而现阶段的滨水区景观设计过程中,往往对水环境问题认识程度不够,同时缺乏系统的理论作为依据,为景观水体的长期运行和管理埋下了隐患。一些水环境问题也随之而来,主要体现在水质,水体交换能力等问题。在一个水环境系统中,水体物理和生物化学过程相互影响,控制污染物的归宿,对生态系统的健康与否起着重要的作用。其中,一个重要的物理过程即为水体与外界的水体交换,污染物通过对流输运和稀释扩散等物理过程与周围水体混合,与外海水交换,浓度降低,水质得到改善。因此,在研究水景观的环境问题之前,定量的研究水体交换能力和污染物扩散规律至关重要。本论文以一景观型泻湖(七里海泻湖)为背景,建立七里海泻湖的三维水动力数学模型,根据现场观测数据进行了泻湖校核与验证;并利用更新时间、停留时间、曝光时间、连通性等方法研究七里海泻湖的水体交换能力及污染物的输移扩散规律。主要研究内容及成果如下:
     (1)全面介绍了三维环境流体力学模型EFDC,并基于EFDC模型,建立了七里海泻湖数值模型,共包括现状七里海泻湖模型网格和修复后七里海泻湖模型网格两套网格,前者用于模型验证,后者用于修复后泻湖的水动力学模拟。给出了七里海泻湖水动力模型的主要参数设置,并利用辽东湾两个测站的两组实测数据对模型的计算结果进行校核与验证。证明了本模型模拟七里海泻湖水动力特性的有效性和实用性。
     (2)应用修复后七里海泻湖数学模型研究了七里海泻湖的流场特性,模型全面考虑海洋潮汐,季节性风对七里海泻湖的流场的影响,通过这些模拟增进对海洋中近似保守物质输移过程的理解。
     (3)应用修复后七里海泻湖数学模型研究了七里海泻湖的水体交换特性,选用更新时间、停留时间、曝光时间等方法分析水流输运时间,通过数值模拟试验,分析了海洋潮汐、季节性风、潮汐通道口深度与数目对七里海泻湖的水流输运时间的影响,增进了对泻湖中物质的输运过程及它们在时间、空间上变化过程的认识。
     (4)应用修复后七里海泻湖数学模型研究了七里海泻湖的污染物扩散规律,选用连通性等方法分析泻湖内污染的扩散规律,通过数值模拟试验,分析了海洋潮汐、季节性风、潮汐通道口深度与数目对污染物扩散规律的影响,便于管理者及时确定污染源的影响范围、影响时间,为泻湖的水质管理提供科学支持。
In recent years, the development of water landscape is becoming a new hotspotgradually with the improvement of city modernization and the people’s livingstandard. During the process of the waterfront district landscape design, the designersoften lack of full attention to the water environment problems and lack of systemtheory knowledge, so that some water environment problems (poor hydrodynamic,deteriorated water quality et al) will be emerged during long term operation of waterlandscape. The health of a water ecosystem is governed by its physical, chemical, andbiological processes. One physical process that affects the health and water quality ofthe system and indicates its susceptibility to impairment is water renewal capacitybetween the lagoon and the open sea. Through the advection and diffusionmechanisms, the water mass is transported to the open sea where it is mixed with thesea. During this process, the pollutant is neutralized and mechanically removed fromthe ecological compartment.So it is important to study on water renewal capacity andthe transport and diffusion processes of pollutants for a landscape ecosystem system.In the study, we take a landscape lagoon as an example, to study the transport anddiffusion process in a reconstructed lagoon (Qilihai Lagoon) using residence time,exposure time using a three-dimensional numerical model. The model was calibratedand verified by using field measured data. The main works of this study are asfollows:
     (1) A three-dimensional numerical model-Environmental Fluid Dynamics Code(EFDC)was introduced in detail. The case of the Qilihai Lagoon was proposedbased on EFDC in this study and two structured grids were used to model it. One gridrepresented the present configuration of the lagoon and was applied for modelcalibration and validation. The other grid represented the configuration of the lagoonafter reconstruction and was used for studying the water renewal capacity in thereconstructed lagoon. The Qilihai Lagoon model was calibrated and verified by usingfield data measured, and the main parameters about the model was confirmed. Theresults showed that the model could accurately and effectively simulate hydrodynamicconditions in the lagoon.
     (2) The the reconstructed lagoon model was used to study the flow field in thelagoon. The influences of wind on flow field were also investigated. It would help usto understand the transport and diffusion processes of conservative substances.
     (3) The the reconstructed lagoon model was used to study the water renewalcapacity in the lagoon. The renewal time, residence time and exposure time were usedas timescales. The influences of wind and the depth and the number of the tidal inletof the lagoon on water renewal capacity were also investigated. It would help us tounderstand the spatial and temporal distribution the transport and diffusion ofconservative substances in the lagoon.
     (4) The the reconstructed lagoon model was used to study the transport anddiffusion processes of pollutants in the lagoon. The connectivity were used astimescales. The influences of wind and the depth and the number of the tidal inlet ofthe lagoon on transport and diffusion processes of pollutants were also investigated. Itwould help manager control the pollution and manage the water quality scientifically.
引文
[1] GB838-88,地面水环境质量标准[S].
    [2]王俊岭,李慧.城市景观水质控制的研究[J].山西建筑,2005,31(8):242-243.
    [3]朱铭.厦门西水东调搞活员筜湖上游水体工程介绍[J].福建建设科技,2000,1:36-37.
    [4]张龙涛.城市景观水体水质模拟和改善技术[D].西安:西安建筑科技大学,2008:3-4.
    [5]王凤新.耦合水体流动循环系统的围海造陆区域规划理论与应用研究[D].天津:天津大学,2009:3-4.
    [6]张庭伟,冯辉,彭治权.城市滨水区设计与开发[M].上海:同济大学出版社,2002:45-47.
    [7]郑孝弟.城市防洪与水景观生态环境建设初探[J].能源与环境,2009,(2):71-72.
    [8]朱斌.广西沿江城市滨水区景观设计研究[D].上海:上海交通大学,2008:12-13.
    [9]孙鹏,王志芳.遵从自然过程的城市河流和滨水区景观设计[J].城市规划,2000,24(9):19-22.
    [10]杨馥,曾光明,焦胜.城市滨水区的生态恢复研究[J].环境科学与技术,2005,28(7):108-110.
    [11]陈娟.上海远香景观湖水动力试验与研究[D].扬州:扬州大学,2009:3-4.
    [12]梁婕,曾光明,郭生练等.湖泊富营养化模型的研究进展[J].环境污染治理技术与设备,2006,7(6):24-30.
    [13]Saint-Venant B.D. Theories du movement non-permannent des seaux avecapplication aux cures des riviees el.1’introdaction des marees dans leur lit, Aead[J].Sci. Comptes renkus,1871,73(1):148-154.
    [14]Lasscson R.E., Stoker J.J., Troesch B.A. Numerical Solution of flood predictionand river regulation problems (Ohio-Missippi floods)[R],1954.
    [15]Leendertse J.J. Water quality model for well-mixed estuary and coastal seas[R].Vol.l Principles of computation. Corp. Santa Monica, Calif. RM-6230-RC,1970.
    [16]Boon J.D.,Welch C.S., Chen H.S., et al. A storm surge model study, Vol.l1, Afinite element storm surge analysis and its application to a bay-ocean system[R].Virginia Inst. Marina Science. Gloucester Point Va., Sepc. Rep.,1987.
    [17]Amein M, Ching S.F. Implicit flood routing in natural channels[J]. J. Hyd. DivASCE,1970,99(12):2482-2500.
    [18]Vasiliev O.F, Voyevodin A.F, Atavin A.A. Numerical method for the calculationof unsteady flow in systems of open channels and canals[C]. Proceedings of theInternational Symposium on Unsteady Flow in Open Channels,1976, E2-15-22.
    [19]Preissmann A. Use of Mathematical Method[C]. Proceedings of the InternationalSymposium on Unsteady Flow in Open Channels,1978,3-23-28.
    [20]Abbott M.B. Computational Hydrakics[M], Pitman,1979.
    [21]Yanenko N.N. The Method of fractional steps[M]. Springer-Verleg, Berlin&NewYork,1971.
    [22]Marchuk G.I. Methods of numerical mathematics[M]. Translated by Jiri Ruzzicka,Springer,1975.
    [23]Gendey R.T&Lick W. Wind-driven current in lake Erie[J]. Journal of GeophysicalResearch,1972,117(12):2714-2723.
    [24]Heaps N.S. On the numerical solution of the three dimensional hydrodynamicequations for tides and storm surges[J]. Men. Soc. R. Sci. Liege,1972.12(1):143-180.
    [25]Lebdertes J.J., Alexander R.C., Liu S.K. A three-dimensional model for estuariesand coastal seas. Vol.l, Principles of Computation[R]. R-1417-OWRR, Rand Corp.,Santa Monica, California,1973.
    [26]Leendertes J.J., Liu S.K. Three dimensional flow simulation in Estuarids[M].Proc. Int. Symp. Unsteady Flow in Open Channels, Int. Assoc. Hydraul. Res.Newcastle-upon-tyne Eng.,1976.
    [27]Caponi E.A. A three-dimensional model for the numerical simulation ofestuaries[J]. Advances in GeoPHysics,1976.29(1):198-201.
    [28]Blumberg A F. Numerical tidal model of Ehesapeake bay[J]. Hydraulics Div.ASCE,1977,103(1):1-10.
    [29]Davies A.M. The numerical solution of the three dimensional hydrodynamicequations using a B-spline representation of the vertical current profile. BottomThurblence, Elsevier Publ. Co., Amsterdam.1977.
    [30]Davies A.M., Owen A. Three dimensional numerical sea modes using theGalerkin method with a polynomialbasic set[J]. Appl. Math. Modelling,1979.43(3):421-428.
    [31]Tee K.T. The structure of three-dimensional tide-generating currents Part I,Oscillating current, J[J]. PHysical Oceanogra,1979,85(9):930-944.
    [32]Nihoul J.C.J., Runfola Y., Roisin B. Nonlinear three dimensional modellingmesscale circlation in sea and lakes[J]. Marine Forecasting, Elsevier OceanograPHSeries,1979.
    [33]Charles S.G., Thomas G.B., Neassan F. An analysis of RNG base turbulent modelsfor homogeneous shear flow[J]. Physics of Fluids,1991,3(9):2278-2281.
    [34]Hamrick J.M. A three-dimensional environmental fluid dynamics computer code:theoretical and computational aspects[Z]. The college of William and Mary, VirginiaInsititute of Marine Science,1992.
    [35]Tetra Tech Inc. Development of the hydrodynamic and water quality models forthe Savannah Harbor expansion project.[R].2005.
    [36]Tim A.W. Water quality analysis simulation program(WASP) version6.0, draft:User’s manual[Z]. MS Tech. Inc.,2001.
    [37]Ambrose R.B. WASP4, a hydrodynamics and water quality model theory, user’smanual and programmers guide[Z]. U. S. Environmental Protection Agency, Athens,GA.,1988.
    [38]Blumberg A.F., Mellor G.L. A description of a three-dimensional coastal oceancirculation model[J].Coastal and Estuarine Sciences,1987,4:1-16.
    [39]Danish Hydraulic Institute. MIKE3estuarine and coastal hydraulics and userguide[Z].2002.
    [40]Danish Hydraulic Institute. MIKE3estuarine and oceanography user guide[Z].2000.
    [41]Delft Hydraulics Institute. Delft3d-flow user’s manual[Z].2001.
    [42]Takeoka H. Fundamental concepts of exchange and transport timescales in acoastal sea[J].Continental Shelf Research,1984,3:322-326.
    [43]Takeoka H. Exehange and transport timescales in the Seto Inland Seas[J].Continental shelf Researeh,1984,3:327-341.
    [44] Ribbe J., Wolff J., Staneva J. and Grawe J. Assessing Water renewal time scalesfor marine environments from three-dimensional modeling: a case study for HerveyBay, Australia[J]. Environmental Modeling&Software,2008,23(10):1217-1228.
    [45] Jouon A., Douillet P., Ouillon S., et al. Calculations of hydrodynamic timeparameters in a Semi-opened coastal zone using a3D hydrodynamicmodel[J].Continental Shelf Researeh.2006,26(12-13):1395-1415.
    [46]Huang W.R., Spaulding M. Modelling residence time response to fresh waterinput in Apalachicola Bay, Florida,USA[J]. Hydrological Processes.2002,6(15):3051-3064.
    [47]Orfila A., Jordi A., Basterretxea G., et al. Residence time and posidonia oeeanicain Cabrera Archipelago national park, Spain[J]. Continental Shelf Researeh.2005,25(11):1339-1352.
    [48]Rueda F., Moreno-Ostos E., Armengol J. The residence time of river water inreservoirs[J]. Ecological Modelling.2006,191(2):260-274.
    [49]Wang C.F., Hsu M.H., Kuo A.Y. Residence time of the Danshuei river estuary,Taiwan[J]. Estuarine, Coastal and Shelf Sciense.2004,60(3):381-393.
    [50]Ulses C., Grenz C., Marsaleix P., et al. Circulation in a semi-enclosed bayunder influence of strong freshwater input[J]. Journal of Marine Systems.2005,56(l-2):113一132.
    [51]Arega F., Armstrong S., Badr A.W. Modeling of residence time in the east ScottCreek estuary, south Carolina, USA[J]. Journal of Hydro-Environment Researeh.2008,2(2):99-108.
    [52]Meyers S.D., Luther M.E. A numerical simulation of residual circulation inTampa Bay. Part Ⅱ:Lagrangian residence time[J]. Estuaries and Coasts.2008,31(5):815-827.
    [53]Cucco A., Umgiesser G., Ferrarin C., et al. Eulerian and Lagrangian transport timescales of a tidal active coastal basin[J]. Eeological Modelling.2009,220(7):913-922.
    [54]Warner J.C., Geyer W.R., Arango H.G. Using a composite grid approach in acomplex coastal domain to estimate estuarine residence time[J]. Computers&Geosciences.2010,36(7):921-935.
    [55] Delhez E. J. M., Campin J., Hirst A.C., etal.Toward a general theory of the age inocean modelling[J].Ocean Modelling.1999,1(1):17-27.
    [57]Huang W. R., Liu X.H., Chen X.J., et al. Estimating river flow effects on waterages by hydrodynamic modeling in Little Manatee River estuary, Florida, USA[J].Environmental Fluid Mechanics.2010,10(1-2):197-211.
    [58]Shen J, Haas L.Calculating age and residence time in the tidal York River usingthree-dimensional model experiments[J]. Estuarine, Coastal and Shelf Science.2004,61(3):449-461.
    [59]Shen J., Wang H.V. Determining the age of water and long-term transporttimescale of the Chesapeake Bay[J]. Estuarine, Coastal and Shelf Sciense.2007,74(4):585-598.
    [60]Areg F., Badr A.W. Numerical age and residence-time mapping for asmall tidalcreek: case study[J]. Journal of Waterway Port Coastal and Oeean Engineering-ASCE.2010,136(4):226-237.
    [61]Shen J., Lin J. Modeling study of the influences of tide and stratification on age ofwater in the tidal James river[J]. Estuarine, Coastal and Shelf Seience.2006,68(l-2):101-112.
    [62]Gong W.P., Shen J., Hong B. The influence of wind on the water age in the tidalRappahannock river [J]. Marine Environmental Researeh.2009,68(4):203-216.
    [63]Gourgue O., Deleersnijder E., White L. Toward a generic method for studyingwater renewal, with application to the epilimnion of Lake Tanganyika[J].Estuarine,Coastal and Shelf Seienee.2007,74(4):628-640.
    [64]Wang Y., Shen J.A., He Q. A numerical model study of the transport timescaleand change of estuarine circulation due to waterway constructions in the Changjiangestuary,China[J].Journal of Marine Systems.2010,82(3):154-170.
    [65]Doos K., Engqvist A. Assessment of water exehange between a discharge regionand the open sea-acomparison of different methodological concepts[J]. Estuarine,Coastal and Shelf Scienee.2007,74(4):709-721.
    [66]Delhez E.J.M, Deleersnijder E. The Boundary Layer of the Residence Time Held.2006,56:139-150.
    [67]Monsen N.E, Cloern J.E, Lucas I.Y et al. A Comment on the Use of FlushingTime, Residence Time, and Age as Transport Time Scales[J]. Limnology andOceanography,2002,47(5):1545-1553.
    [68]魏皓,田恬,周锋等.渤海湾水交换的数值研究[J].青岛海洋大学学报,2002,32,519-525.
    [69]匡国瑞.海湾水交换的研究—海水交换率的计算方法[J].海洋环境科学,1986,5(3):45-48.
    [70]匡国瑞,杨殿荣,喻祖祥.海湾水交换的研究—乳山东湾环境容量初步探讨[J].海洋环境科学,1987,6(1):13-23.
    [71]朱小兵,高抒,陈妙红等.海南岛博鳌港水体交换的初步研究[J].热带海洋学报,2003,22,71-77.
    [72]刘绿柳,杨志峰,沈珍瑶.水体交换与传输的时间维特征[J].自然资源学报,2003,18,87-93.
    [73]韩舞鹰,林洪瑛,黄西能.广州省大亚湾海水交换的研究[J].海洋通报,1988,7(3):1-6.
    [74]王寿景.厦门西港海水交换计算[J].台湾海峡,1990,9(2):108-111.
    [75]姬厚德,潘伟然,张国荣等.筼筜湖纳潮量与海水交换时间的计算[J].厦门大学学报(自然科学版),2006,45,660-663.
    [76]娄海峰,黄世昌,谢亚力.象山港内水体交换数值研究[J].浙江水利科技,2005,140,8-12.
    [77]杜伊,周良明,郭佩芳等.罗源湾海水交换三维数值模拟[J].海洋湖沼通报,2007,7(l):7-13.
    [78]王聪,林军,陈王茂等.大亚湾水交换的数值模拟研究[J].南方水产,2008,4(4):8-13.
    [79]Gong W., Shen J., Jian J. The impact of human activities on the flushingproperties of a semi-enelosed lagoon: Xiaohai,Hainan,China[J].Marine EnvironmentalResearch,2008,65,62-76.
    [80]董礼先,苏纪兰.象山港水交换数值研究Ⅰ-对流—扩散型水交换模式[J].海洋与湖沼,1999,30(4):410-415.
    [81]董礼先,苏纪兰.象山港水交换数值研究Ⅱ-模型应用和水交换研究[J].海洋与湖沼,1999,30(5):465-470.
    [82]赵亮,魏浩,赵建中.胶州湾水交换的数值研究[J].海洋与湖沼,2002,33(1):23-29.
    [83]Qi D., Shen H., Zhu J. Flushing time of the Yangtze Estuary by discharge:Amodel study[J]. Journal of Hydrodynamics,2003, Ser.B3,63-71.
    [84]孙英兰,张越美.丁字湾物质输运及水交换能力研究[J].青岛海洋大学学报,2003,33,1-5.
    [85]吕新刚,赵昌,夏长水等.胶州湾水交换及湾口潮余流特征的数值研究[J].海洋学报,2010,32(2):20-30.
    [86]Shen Y.M., Wang J.M., Zheng B.H., et al. Modeling Study of Residence andWater age in Dahuofang Reservior in China [J]. Science China-Physices Mechanics&Astronomy,2011,54(1):127-142.
    [87]Li Y.P., Acharya K., Yu Z.B. Modeling Impacts of Yangtze River Water Transferon Water Ages in Lake Taihu, China[J]. Ecological Engineering,2011,37(2):325-334.
    [88]Brauwere A.D., Brye B.D., Blaise S., et al. Residence Time, Exposure Time andConnectivity in the Scheldt Estuary[J]. Journal of Marine Systems,2011,84(3):85-95.
    [89]杨会利,袁振杰,高伟明.七里海泻湖湿地演变过程及生态环境效应分析[J].湿地科学,2009,7(2):118-124.
    [90]Hamrick J.M. Users’s manual for environmental fluid dynamics computercode[Z]. Virginia Insitute of Marine Science,1996.
    [91]Khangaonkar T., Yang Z. Q., DeGasperi C., et al. Modeling hydrothermalresponse of a reservoir to modifications at a high-head dam[J]. Water International,2005,30(3):378-388.
    [92]Hamrick J.M. Application of the EFDC hydrodynamic model to LakeOkeechobee[R]. Virginia Insitute of Marine Science,1996.
    [93]U.S. Water Resources Research. Development of the Everglades wetlandhydrodynamic model, Part I: Model formulation and physical processesrepresentation[R].2001.
    [94]U.S. Water Resources Research. Development of the Everglades wetlandhydrodynamic model, PartII: Computational implementation of the model[R].2001.
    [95]Hamrick J.M. Estuarine environmental impact assessment using athree-dimensional circulation and transport model[A]. Estuarine and CoastalModeling, Proc. of the2nd International Conf.[C]. New York,1992:292-303.
    [96]Hamrick J.M. Evaluation of island creation alternatives in the Hampton Flats ofthe James River[R]. Virginia Institute of Marine Science,1994.
    [97]Hamrick J.M., Kuo A.Y., Shen J. Mixing and dilution of the Surrey NuclearPower Plant cooling water discharge into the James River[R]. Virginia Institute ofMarine Science,1995.
    [98]陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展,2005,20:829-835.
    [99]王征,郭秀锐,程水源等.三峡库区典型排污口河段污染物扩散降解特性研究[J].安全与环境学报,2012,12(1):102-105.
    [100]任华堂,陶亚,夏建新等.旱季深圳湾水污染输移扩散特性研究[J].水力发电学报,2010,29(4):132-139.
    [101]Bolin B., Rodhe H. A note on the concepts of age distribution and transit time innatural reservoirs[J]. Tellus.1973,25(l):58-62.
    [102]Deleersnijder E., Campin J.M., Delhez E. The concept of age in marinemodelling I.Theory and preliminary model results[J]. Journal of Marine Systems.2001,28(3-4):229-267.
    [103]Brye B.D., Brauwere A.D., Gourgue O., et al. Water renewal timescales in theScheldt Estuary[J]. Journal of Marine Systems.2012,94,74-86.
    [104]Mellor G.L. and Yamada T. Development of a turbulence closure model forgeophysical fuid problems[J]. Rev. Geophys,1982,20:851-875.
    [105] HydroQual Inc. A Primer for ECOMSED, Version1.3, User’sManual[Z].HydroQual Inc.,1Lethbridge Plaza, Mahwah, NJ,188pp,2002.
    [106]Smagorinsky J. General circulation experiments with the primitive equations: I.The basic experiment[J]. Mon.Weather Rev.1963,91:99–164.
    [107]Berntsen J. Internal pressure errors in sigma-coordinate ocean models[J]. J.Atmos. Oceanic Technol.2002,19(9):1403–1414.
    [108]Cucco A.&Umgiesser G. Modeling the Venice Lagoon residence time[J].Ecological Modelling.2006,193(1-2),34-51.
    [109]Azamathulla H.M., Ghani A.A., Zakaria, N.A., et al. Genetic programming topredict bridge pier scour[J]. Journal of Hydraulic Engineering ASCE,2010,136:165-169.
    [110]Nazafzadeh M.&Azamathulla H.M. Group Method of Data Handling to PredictScour Depth around Bridge Piers[J]. Neural Computing&Applications, doi10.1007/s00521-012-1160-6.
    [111]Wang W.C., Cheng C.T., Chau, K.W. et al. Calibration of Xinanjiang modelparameters using hybrid genetic algorithm based fuzzy optimal model[J]. Journal ofHydroinformatics,2012,14:784-799.
    [112]Chau K.W., Wu C.L.&Li Y.S. Comparison of several flood forecasting modelsin Yangtze River[J]. Journal of Hydrologic Engineering ASCE,2005,10:485-491.
    [113]Lin J.Y., Cheng C.T.&Chau K.W. Using support vector machines for long-termdischarge prediction[J]. Hydrological Sciences Journal,2006,51:599-612.
    [114]李文丹.葫芦岛海域潮流泥沙数值模拟[J].水道港口,2008,29(2):94-99.