基于整车动力学性能的菱形车前后悬架系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的不断发展,我国已经成为世界上的汽车制造大国,但是由于自主研发能力的欠缺,中国还远远不是汽车强国。同时,汽车保有量不断增加,其带来的负面影响也在不断凸显,交通拥堵、交通事故增加、燃料需求紧张以及环境污染等问题越来越受到社会的关注。
     菱形车是一款新型汽车,其底盘布置形式与传统汽车的矩形布置形式不同。菱形车四个车轮呈菱形布置,且前后车轮为单轮,承担着联动转向功能,中轮为驱动轮,这样决定了其在总布置以及悬架、转向、制动系统的设计等许多方面会与传统车辆有所不同。菱形车不仅具有完全的自主知识产权,而且在缓解交通、提高碰撞安全、节省燃油以及减少环境污染等方面具有自身的优势。但是,对于菱形车独特的底盘布置形式以及由此带来的一些结构上的创新设计,目前可供直接参考的理论和文献资料相对较少,要实现菱形车将来的产品化和市场化,还有大量的研究工作需要进行。本文在菱形车的平顺性、操纵稳定性、悬架参数设计以及悬架和车轮结构设计等方面进行了较为深入的研究,主要内容包括:
     确定了菱形车各悬架系统以及前后轮系统的基本结构。根据菱形底盘布置形式的特殊性,通过对传统悬架形式进行对比分析,确定双纵臂和双横臂独立悬架分别作为菱形车前后悬架和中悬架的基本形式。双纵臂独立悬架不仅适用于转向轮,而且有利于降低整车质心,可以满足菱形车对前后悬架基本要求,悬架和前后轮系统结构的确定有助于后续菱形车的整车性能分析以及优化等工作。
     建立了菱形车十五自由度整车平顺性模型,并分别在随机路面和脉冲路面下分析了各设计变量对其平顺性的影响规律。根据菱形车的底盘布置特点,详细推导了菱形车整车平顺性的动力学模型,通过求解,分别得到驾驶员和左后乘员的垂向加权加速度均方根值和最大垂向加速度,从而对整车平顺性进行评价。平顺性模型是菱形车整车性能深入研究的一个理论基础,各设计变量对平顺性的影响规律也为菱形车总布置提供了理论参考。
     建立了菱形车二自由度和三自由度操纵模型,并分析了各设计变量对操纵稳定性的影响规律,同时对两个操纵模型进行了对比分析,发现了二者之间的不同。二自由度模型主要考虑侧向和横摆运动,而三自由度模型不仅考虑侧向和横摆运动,而且考虑侧倾运动,通过对菱形车的稳态回转、方向盘角阶跃输入和方向盘角脉冲输入试验的仿真研究,分析了各设计变量对菱形车操纵稳定性的影响规律,为菱形车总布置以及悬架参数选择提供了理论依据,也为菱形车操纵稳定性的深入研究奠定了理论基础。
     利用协同优化技术对菱形车的悬架参数进行了优化设计。菱形车悬架参数的变化对平顺性和操纵稳定性的影响存在矛盾性。优化前,通过菱形车样车试验对建立的平顺性模型和三自由度操纵模型进行验证,验证正确后以二者为基础,根据协同优化思想建立了菱形车悬架参数的优化模型,通过优化使得菱形车的整车性能在一定程度上得到了综合提高。优化后的悬架参数能够指导菱形车悬架结构设计,为其提供理论参考。
     利用近似建模技术,对菱形车前后轮系统的横梁结构进行了优化设计。根据菱形车的结构特点确定横梁的基本结构,并通过灵敏度分析确定横梁的关键设计尺寸,利用拉丁超立方方法建立横梁样本,再通过对各个样本的分析得到横梁的质量和疲劳寿命,从而利用Kriging近似建模技术建立横梁质量和疲劳寿命的近似模型,在此基础上以横梁疲劳寿命为约束条件,以横梁质量最小化为目标,对其关键设计尺寸进行优化设计。这种设计方法对于菱形车的横梁设计来说,可以大大地缩短设计时间,节约设计成本。
     本文的研究对菱形车整车设计参数选择以及前后悬架和前后轮的结构设计提供了理论依据,这不仅对菱形车的样车生产具有实际指导意义,而且为菱形车将来的产品化和市场化奠定了理论基础,具有很好的工程实际意义。
With the development of automobile industry, our country has become a bigcountry of automobile in the world, but China is far from being a power country ofautomobile due to the lack of independent research and development capabilities. Atthe same time, its negative influence has been highlighted following the cars’squantity increasing, and the problems of traffic congestion, traffic accidentsincreasing, fuel shortage and environmental pollution are attentioned more and more.
     As a new car, the chassis layout of the rhombic vehicle is different fromtraditional rectangular layout. Its four wheels is rhombic arrangement, and the frontwheel and the rear wheel are a single wheel with linkage steering function, the middlewheels are driving wheels, which determines the rhombic car may be difference fromthe traditional form in the design of the general arrangement, suspensions, steeringand brake system. The rhombic vehicle not only has complete independent intellectualproperty rights, but also has the advantage of oneself in remission, improving trafficsafety, saving fuel and reducing the environmental pollution. However, the directreference theory and literature data are comparatively few due to rhombic vehicleunique chassis layout and some structural innovation design. There are a lot ofresearch work to do for achieving the production and marketization. The ride comfort,handling stability, design of the suspensions’ parameters and design of suspension andwheel’s structure are studied in this paper, and the main contents include:
     The basic structure of the rhombic vehicle suspensions and the system of frontand rear wheels are determinded. According to the particularity of the rhombic chassislayout, the double trailing arm independent suspension is selected as the front and rearsuspensions, and the double wishbone independent suspension is selected as middlesuspensions through comparing the traditional suspensions. The double trailing armindependent suspension is not only applicable to the steering wheel, but also is infavor of reducing vehicle centroid. It can meet the basic requirements of the front andrear suspensions, and the structure of the front/rear suspension and wheels aredeterminded to be useful to the performance analysis and optimization work of therhombic vehicle.
     The model with fifteen degrees of freedom of the rhombic vehicle ride comfort isestablished, and the influence law to the ride comfort is revealed to analysing the design variables on the random road and pulse road respectively. Based on therhombic chassis layout, the dynamics equations of the ride comfort are deduced indetail and the root-mean-square value of vertical weighted acceleration and maximumvertical acceleration of the driver and left rear passenger through solving theequations are used to evaluate the ride comfort of the rhombic vehicle. The model ofthe ride comfort is a theoretical basis to study the vehicle performance, and theinfluence law of the design variables will provide theory reference to the generalarrangement of the rhombic vehicle.
     The model with two DOF and three DOF of the handling are built, and theinfluence law is revealed by analysing the design variables. At the same time, thedifference between the models with two DOF and three DOF is discovered throughcomparement and analysis. The model of two degree of freedom mainly considers thelateral and yaw motion, and the model of three degree of freedom considers not onlythe lateral and yaw motion, but also the roll motion. The influence law is analysedthrough the simulation of steady static circular test procedure, steering wheel anglestep input test and steering wheel angle pulse input test. The law will not only providetheory reference to the general arrangement and selecting the suspension parameter,but also lay the foundation to study the handling stability in deeply.
     The parameters of suspension are designed by the collabrative optimizationtechnology. There is the contradictoriness with the influence to the ride comfort andhandling and stability due to the parameter change of the suspensions. Beforeoptimization, the model of ride comfort and handling with three degrees of freedommust be verificated by the test of the real vehicle. The optimization model of thesuspension parameters is built according to the collabrative optimization afterverification, and the vehicle performance is improved synthetically to a certain extentthrough the optimization. The optimized suspension parameters will guide thesuspension structure design, and provide theoretical reference.
     The optimization design of the beam is done in structure by using theapproximation modeling. According to the features of the rhombic vehicle, the basicstructure of the beam is determined, and the key design size of the beam is determinedthrough sensitivity analysis. The samples of the beam are built by using the Latinhypercube method. Based on the quality and fatigue life of the samples, theapproximate models of the quality and fatigue life are built by Kriging approximationmodeling method, and the key size is optimization designed with the beam fatigue lifeas constraint condition, the beam quality is minimized as the goal. The design method can greatly shorten the design time and save the design cost for the beam of therhombic vehicle.
     The study in this paper will provide a theoretical basis to selecting the designparameter selection and designing the structure of the front/rear suspensions andfront/rear wheels, which not only has practical significance to prototype production ofthe rhombic car, but also lays theoretical foundation to the production andmarketization in the future. The study has the big significance to the project.
引文
[1]郑军.新概念车舒适性与操纵稳定性研究:[湖南大学博士学位论文].长沙:湖南大学,2001
    [2]钟勇.基于CVT的类菱形混合动力电动汽车系统研究与仿真:[湖南大学博士学位论文].长沙:湖南大学,2005
    [3]莫旭辉.类菱形车操纵动力学分析与优化:[湖南大学博士学位论文].长沙:湖南大学,2008
    [4]毛建中.菱形车中悬架系统优化设计与动力学分析:[湖南大学博士学位论文].长沙:湖南大学,2009
    [5]查云飞.类菱形车转向系统研究与分析:[湖南大学博士学位论文].长沙:湖南大学,2010
    [6]张尚荣.类菱形概念车结构耐撞性仿真研究:[湖南大学硕士学位论文].长沙:湖南大学,2008
    [7]吴军.汽车外流场湍流模型与菱形新概念车气动特性的研究:[湖南大学博士学位论文].长沙:湖南大学,2005
    [8]谢庆喜.菱形电动汽车碰撞安全性仿真研究:[湖南大学硕士学位论文].长沙:湖南大学,2005
    [9]柳东坡.基于虚拟试验场的某菱形客车可靠性分析及抗疲劳优化设计:[湖南大学硕士学位论文].长沙:湖南大学,2011
    [10]张义,莫旭辉,钟志华,闫晓磊.随机路面下菱形客车平顺性研究与优化.中国机械工程,2011,22(23):2892-2897
    [11]张义,莫旭辉,钟志华.基于MATLAB的菱形客车平顺性研究.中国机械工程,2012,23(7):875-880
    [12]张义,莫旭辉,钟志华.基于前后轮联动转向的菱形客车操纵稳定性研究.湖南大学学报(自然科学版),2012,39(5):42-49
    [13]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999
    [14]米奇克.汽车动力学(第四版).北京:清华大学出版社,2009
    [15]余志生.汽车理论(第2版).北京:机械工业出版社,1999
    [16]余志生.汽车理论(第5版).北京:机械工业出版社,2009
    [17] Lanchester F.W. Motor car suspension and independent spring, Proc. Inst.Automobile Engineers,1936, Vol. XXX:668-762
    [18] Olley M. Independent wheel suspension—its whys and wherefores. SAE Journal,1934,34(3):73-81
    [19] Evans, R.D. Properties of tires affecting riding, steering, and handling. Journalof the Society of Automotives Engineering,1935,36(2):41-43
    [20] Milliken W.F, Whitcomb, D.W. General introduction to a program of dynamicresearch, Proc.I.Mech.E. Auto. Div.,1956:287-309
    [21] Segel L. Research in fundamentals of automobile control and stability, SAETrans,1957,65:527-540
    [22]赵又群,郭孔辉.稳态轮胎侧偏力学的发展与展望.汽车技术,1997,3:1-5
    [23]郭孔辉,刘蕴博,杨阳.轮胎试验技术的开发研究及其在汽车性能研究中的应用前景.汽车工程,1990,1:1-9
    [24]刘青,郭孔辉.轮胎侧偏特性研究的特点及其发展.汽车技术,1997,10:1-8
    [25]郭孔辉,隋军.轮胎垂直载荷分布与侧向力模型及纵向力之间的关系.汽车研究与开发,1995,1:22-25
    [26]郭孔辉.轮胎侧偏特性的一般理论模型.汽车工程,1990,3:1-12
    [27]刘青,郭孔辉.根据“弦”胎体理论建立轮胎非稳态侧偏模型.吉林工业大学学报,1996,1:1-9
    [28]郭孔辉,刘青.轮胎非稳态侧偏特性的建模.汽车技术,1996,2:8-12
    [29]郭孔辉,刘青.考虑胎宽时的轮胎非稳态侧偏特性建模.汽车技术,1996,5:5-10
    [30]郭孔辉,刘青.考虑胎体复杂变形时的轮胎非稳态侧偏特性理论模型.汽车工程,1997,19(2):66-71
    [31]刘青,郭孔辉.轮胎非稳态侧偏特性试验分析与试验设计.吉林工业大学学报,1998,1:1-6
    [32]郭孔辉.汽车操纵动力学.吉林:吉林科学技术出版社,1991
    [33]赵又群,郭孔辉.人—车—路闭环操纵系统主动安全性评价指标的探讨.汽车研究与开发,1997,3:25-29
    [34]郭孔辉.人—车—路闭环操纵系统主动安全性的综合评价与优化设计.汽车技术,1993,4:4-12
    [35] Lanchester F.W. Some problem peculiar to the design of automobile, Proc c.Inst. Automobile Engineers,1908, Vol Ⅱ,187
    [36] LaBarre R P., Forbes R T., Andrew S. The measurement and analysis of roadsurface roughness, MIRA Report, No.1970/5
    [37] Aspinaull D T., Oliver R J. Vehicle riding comfort: correlation betweensubjective assessments of vehicle ride and physical measurements of vehiclemotion, MIRA Report, No.1964/10
    [38] MA. Chace. Methods and experience in computer aided design of largedisplacement mechanical systems, Computer aided analysis and optimization ofmechanical system dynamics. NATO ASI Series,1984,32(10):233-259
    [39] Hegazy S, Rahnejat H, Hussain K. Multi-body dynamics in full-vehiclehandling analysis under transient manoeuvre. Vehicle System Dynamics,2000,20(34):1-24
    [40]谢卫国.半挂汽车列车平顺性分析,汽车工程,1993,15(6):363-369
    [41]王连明,束宝玉.汽车平顺性建模及其仿真研究.哈尔滨工业大学学报,1998,30(5):80-84
    [42]张庆才,雷雨成,董文明.汽车7自由度振动模型建模及在汽车平顺性仿真研究中的应用.上海汽车,1999,(3):16-18
    [43]樊兴华,黄席樾,刘光波.九自由度汽车舒适性仿真,重庆大学学报,2000,23:127-132
    [44]王国权.汽车平顺性虚拟试验技术的研究:[中国农业大学博士学位论文].北京:中国农业大学,2002
    [45]乔明侠.基于多体动力学的汽车平顺性仿真分析及悬架参数优化:[合肥工业大学硕士学位论文].合肥:合肥工业大学,2005
    [46]李贝贝.轻型载货汽车行驶平顺性建模仿真及实验研究:[山东大学硕士学位论文].山东:山东大学,2008
    [47] Ozdalyan B. Comparison of suspension rig measurements with computersimulation. International Conference on Simulation98, York,1998
    [48] Holdmann, Peter. Suspension kinematics and compliance-measuring andsimulation. Proceedings of the1998SAE International Congress&Exposition,Detroit,1998
    [49] Lee, Sang-Ho. Four-wheel independent steering system for vehicle handlingimprovement by active rear toe control. JSME International Journal, Series C,1999,42(4):947-956
    [50]许先锋,马东,陆波.方向盘转角阶跃输入的汽车操纵稳定性仿真.美国MDI公司2001年中国用户年会论文集:123-132
    [51]陈加国.前轮定位参数及其动态变化对汽车操纵稳定性的影响.机械设计及制造,2004(1):115-116
    [52]苏小平.依维柯汽车多体动力学仿真分析、优化研究及工程实现:[南京理工大学博士学位论文].南京:南京理工大学,2004
    [53]彭文中.基于ADAMS的汽车操纵稳定性仿真分析及优化:[湖南大学硕士学位论文].长沙:湖南大学,2010
    [54]杨波.计及车架弹性的多轴重型越野车整车动态性能研究:[华中科技大学博士学位论文].武汉:华中科技大学,2004
    [55]邬勇民.基于虚拟样机技术的悬架优化及汽车平顺性仿真:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2007
    [56]陈家瑞.汽车构造.北京:机械工业出版社,2000
    [57][德]耶尔森·赖姆帕尔著,张洪欣,余卓平译.汽车底盘基础.北京:科学普及出版社,1992
    [58] J. Reimpell, H. Stoll, J. W. Betzler. The automotive chassis: Engineeringprinciples (second edition). London: Biddles Ltd, Guildford&Kings Lynn,2002
    [59]张立军.汽车前后悬架固有频率的匹配研究.汽车工程,1998,20(6):356-361
    [60]黄兴惠.基于频域加权性能指标和输出反馈的主动悬架控制策略研究.汽车工程,1998,20(6):321-326
    [61]于翔.汽车悬挂参数的多级优化.汽车技术,1994(4):10-12
    [62] P. Pintado, F. G. Benitez. Optimization for vehicle suspension Ⅰ: time domain.Vehicle System Dynamics,1990,19(1):273-288
    [63] P. Pintado, F. G. Benitez. Optimization for vehicle suspension Ⅱ: frequencydomain. Vehicle System Dynamics,1990,19(1):331-352
    [64]张洪欣.汽车系统动力学.上海:同济大学出版社,1996
    [65]雷雨成.汽车系统动力学及仿真.北京:国防工业出版社,1997
    [66] M. Demic. Optimization of characteristic of elasto-damping elements of carsfrom the aspect of comfort and handling. Int. J. of Vehicle Design,1992,13(1):29-46
    [67] C. N. Spentzas. Optimization of vehicle ride characteristics by means of Box’smethod. Int. J. of Vehicle Design,1993,14(5):539-551
    [68]张洪欣.汽车设计.北京:机械工业出版社,1988
    [69][日]小林明.汽车工程手册.北京:机械工业出版社,1984
    [70]季学武,高义民,裘熙定等.轮胎动刚度和阻尼特性的研究.汽车工程,1994,16(5):315-320
    [71]季学武,赵六奇.轮胎在沙地上牵引特性的新预测模型.汽车工程,1997,19(1):56-59
    [72]吕彭民,董忠红.车辆—沥青路面系统力学分析.北京:人民交通出版社,2010
    [73] Sun Lu, Cai Ximing, Yang Jun. Genetic algorithm-based optimum vehiclesuspension design using minimum dynamic pavement load as a design criterion.Journal of Sound and Vibration,2007,301(1):18-27
    [74] Sun Lu. Optimum design of road-friendly vehicle suspension systems subjectedto rough pavement surface. Application Mathematical Modeling,2002,26(5):635-652
    [75] Sun Lu, Luo Feiquan. Nonstationary dynamic pavement loads generated byvehicles traveling at varying speed. Journal of Transportation Engineering,2007,133(4):252-263
    [76] Sun Lu, Kenney Thomas W. Spectral analysis and parametric study of stochasticpavement loads. Journal of Engineering Mechanics,2002,128(3):318-327
    [77] Alpan I., Naker R. The speed effect in pavement Deflection. Acta Technica,1997,85(1):11-28
    [78] Harr ME. Influence of Vehicle Speed on Pavement Deflection. Proc. HighwayResearch Board,1962
    [79] Kerr W. J., Sherwood J. A., McMahon T. F. Verification and applicationMechanics,1964:491-498
    [80] Antonio J.B., Kausel E. Green’s functions for two-and-a-half-dimentionalelastodynamic loads. Journal of Engineering Mechanics,2000,126(10):1093-1097
    [81] Papagiannakis A. T., Raveendran G. International standards organization-compatible index for pavement roughness. Transportation Research Record, n1643,1998:110-115
    [82] Mannel, Manuel, Beckenbauer, Thomas. Characterisation of road surfaces bymeans of texture analysis. VDI Berichte, n2014,2007:223-239
    [83]鲍警予.路面对四轮汽车的输入谱矩阵.汽车工程,1992,14(1):35-38
    [84]张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究.农业机械学报,2005,36(12):29-32
    [85]张立军,何辉.车辆行驶动力学理论及应用.北京:国防工业出版社,2011
    [86]唐光武,贺学锋,颜永福.路面不平度的数学模型及计算机模拟研究.中国公路学报,2000,13(1):114-117
    [87]张国胜,方宗德,陈善志等.汽车平顺性匹配的动力学模型的研究.系统仿真学报,2008,20(5):1321-1324
    [88] Keqiang Li, Masao Nagai. Control and evaluation of active suspension forMDOF vehicle model. JSAE Review(S0389-4304),1999,20(3):343-348
    [89]黄志刚,毛恩荣,梁新成等.微型轿车八自由度整车动力学仿真与试验.农业机械学报,2008,39(6):29-33
    [90]喻凡,林逸.汽车系统动力学.北京:机械工业出版社,2005
    [91]朱冉,黄志刚,梁新成.轿车九自由度平顺性动力学模型仿真.北京工商大学学报(自然科学版),2008,26(5):30-35
    [92]梁新成,张军,代鑫等.微型轿车七自由度模型的仿真分析与试验研究.车辆与动力技术,2010,29(2):41-45
    [93] M. Mirzaei, R. Hassanneljad. Application of genetic algorithms to optimumdesign of elasto-dampling elements of a half-car model under random roadexcitations. J. Multi-body Dynamics,2007,221(1):515-526
    [94]高新树,宫镇.汽车脉冲输入平顺性评价指标限值的研究.汽车技术,1996,(9):2-3
    [95]高峰,周志清,徐国艳等.多轴转向汽车角阶跃输入的稳态响应特性.江苏大学学报(自然科学版),2008,29(1):17-20
    [96]屈求真,刘延柱.三轴汽车前后轮角输入时的响应特性.汽车工程,1999,21(1):26-30
    [97] Hegazy S., Rahnejat H. Multibody dynamics in full-vehicle handling analysisunder transient manoeuvre. Vehicle System Dynamics,2000,34(1):1-24
    [98]刘晋霞,张文明,张国芬.汽车多刚体操纵稳定性模型及稳定性分析.北京科技大学学报,2007,29(7):739-743
    [99]樊启要,常思勤,操凤萍.三轴汽车四轮转向系统设计.拖拉机与农用运输车,2008,35(2):61-64
    [100] Dave Crolla,喻凡.车辆动力学及控制.北京:人民交通出版社,2003
    [101] GB/T6232.3-94汽车操纵稳定性试验方法—转向瞬态响应试验(转向盘转角脉冲输入).北京:中国标准出版社,1995
    [102] Kroo I., Manning V. Collaborative Optimization: Status and Directions. AIAA2000-4721
    [103] Braun R. D., Gage P., Kroo I., et al. Implementation and Performance Issues inCollaborative Optimization. AIAA96-4017
    [104] Alexandrov N. M., Lewis R. M. Analytical and computational aspects ofcollaborative optimization for multidisciplinary design. AIAA Journal,2002,40(2):302-309
    [105] Cormier T. Comparison of Collaborative Optimization to Conventional DesignTechniques for conceptual RLV. AIAA2000-4885
    [106] Joao P. C. Goncalves, Jorge A. C. Ambrosio. Road vehicle modelingrequirements for optimization of ride and handling. Multibody SystemDynamics,2005,13(1):3-23
    [107] Besselink I., Van F. Numerical optimization of the linear dynamic behavior ofcommercial vehicles. Vehicle System Dynamics,1994,23(1):53-70
    [108] Uys P. E., Els P. S., Thoresson M. J. Suspension settings for optimal ridecomfort of off-road vehicles travelling on roads with different roughness andspeeds. Journal of Terramechanics,2007,44(2):163-175
    [109] Ferry W. B., Frise P. R., Andrews G. T., et al. Combining virtual simulation andphysical vehicle test data to optimize durability testing. Fatigue and Fracture ofEngineering Materials and Structures,2002,25(1):1127-1137
    [110] J. V. Carstensen, H. Mayer, P. Brondsted. Very high cycle regime fatigue of thinwalled tubes made from austenitic stainless steel. Fatigue and Fracture ofEngineering Materials and Structures,2002,25(8-9):837-844
    [111] K. J. Miller, W. J. Odonnell. The fatigue limit and its elimination. Fatigue andFracture of Engineering Materials and Structures,1999,22:545-557
    [112] K. Shiozawa, L. Lu, S. Ishihara. S-N curve characteristics and subsurface crackinitiationbehaviour in ultra-long life fatigue of a high carbon-chromium bearingsteel. Fatigue and Fracture of Engineering Materials and Structures,2001,24(12):781-790
    [113] M. Papakyriacou, H. Mayer, U. Fuchs, et al. Influence of atmosphericmoisture on slow fatigue crack growth at ultrasonic frequency in aluminium andmagnesium alloy. Fatigue and Fracture of Engineering Materials and Structures,2002,221(25):795-804
    [114] Q. Y. Wang, J. Y. Berard, A. Dubarre, et al. Gigacycle fatigue offerrousalloy. Fatigue and Fracture of Engineering Materials and Structures,1999,22(8):667-672
    [115] T. Abe, Y. Furuya, S. Matsuoka. Gigacycle fatigue properties of1800MPaclass spring steels. Fatigue and Fracture of Engineering Materials andStructures,2004,159(27):159-167
    [116] T. Billaudeau, Y. Nadot. Support for an environmental effect on fatiguemechanisms in the long life regime. International Journal of Fatigue,2004,100(26):839-847
    [117] Y. Murakami, N. N. Yokoyama, J. Nagata. Mechanism of fatigue failure inultralong life regime. Fatigue and Fracture of Engineering Materials andStructures,2002,25(8-9):735-746
    [118] C. R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, et al. Gigacycle fatiguebehavior of a high chromium alloyed cold work tool steel. International Journalof Fatigue,2008,30(7):1137-1149
    [119] A. K. Lynn, D. L. Duquesnay. Computer simulation of variable amplitudefatigue crack initiation behaviour using a new strain-based cumulative damagemodel. International Journal of Fatigue,2002,24(2):977-986
    [120] H. Q. Xue, E. Bayraktar, C. Bathias. Damage mechanism of a nodular cast ironunder the very high cycle fatigue regime. Journal of Materials ProcessingTechnology,2008,202(20):216-223
    [121] Gonzalo M. Dominguez Almaraz. Prediction of very high cycle fatigue failurefor high strength steels based on the inclusion geometrical properties.Mechanics of Materials,2008,40(5):636-640
    [122] X. Q. Shi, H. L. J. Pang, W. Zhou, et al. Low cycle fatigue analysis oftemperature and frequency effects in eutectic solder alloy. International Journalof Fatigue,2000,22(11):217-228
    [123] J. T. Klamo, A. Leonard, A. Roshko. The effects of damping on the amplitudeand frequency response of a freely vibrating cylinder in cross-flow. Journal ofFluids and Structures,2006,102(22):845-856
    [124] Zhang Yonglin, Zhang Jiafan. Numerical simulation of stochastic road processusing white noise filtration. Mechanical Systems and Signal Processing,2006,20(2):363-372
    [125] L. Susmel, R. Tovo, P. Lazzarin. The mean stress effect on the high-cyclefatigue strength from a multiaxial fatigue point of view. International Journal ofFatigue,2005,27(6):928-943
    [126] A. N. Damir, A. Elkhatib, G. Nassef. Prediction of fatigue life using modalanalysis for grey and ductile cast iron. International Journal of Fatigue,2007,29(15):499-507
    [127] Lucifredi A., Mazzieri C., Rossi M.Application ofmulti-regressive linearmodels, Dynamic kriging models and neural network models to predictivemaintenance of hydroelectric power systems. Mechanical Systems and SignalProcessing,2000,14(3):471-494
    [128] Martin J. D., Simpson TW.A study on the use of kriging models to approximatedeterministic computer models.Design Engineering Technical Conferences andComputers and Information in Engineering Conference. Chicago: ASME,2003
    [129] Sakata S, Ashida F’Zako M. Structural optimization using krigingapproximation. Computer Methods inApplied Mechanics and Engineering,2003,192:923-939
    [130] Kaymaz I. Application of kriging method to structural reliability problemsStructural Salty.2005,27(2):133-151
    [131] Simpson T. W., Manery Timothy M., Korte John J., et a1. Kriging models forglobal approximation in simulation based multidisciplinary design optimizationAmerican Institute of Aeronautics and Astronautics Journal.2001,39(12):2233-2241
    [132] Martin Jay D., Simpson Timothy W. Use of Kriging models to approximatedeterministic computer models. American institute of Aeronautics andastronautics Journal.2005,43(4):853-863
    [133]张崎,李兴斯.基于Kriging模型的结构可靠性分析.计算力学学报.2006,23(2):175-179
    [134]杜宇建,萧德云.Kriging算法在温度场计算中的应用分析.计算机辅助设计与图形学学报.2004,16(8):1153-1158
    [135]谢延敏,于沪平,陈军等.基于Kriging模型的可靠度计算.上海交通大学学报.2007,41(2):177-180
    [136]周小文,付晖,吴昌瑜.地层特性随机场插值方法应用研究.岩土力学.2005,26(2):221-224
    [137]孟健,马小明.Kriging空间分析法及其在城市大气污染中的应用.数学的实践与认识.2002,32(2):309-312
    [138]刘耀林,傅佩红.Kriging空间分析法及其在地价评估中的应用.武汉大学学报(信息科学版).2004,29(6):472-474
    [139]王晓锋,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用.工程热物理学报.2005,26(3):423-425
    [140]刘瑞民,王学军,郑一等.地统计学在太湖水质研究中的应用.环境科学学报.2002,22(2):209-212
    [141]刘承香,阮双琛,伍小芹.基于Kriging插值的数字地图生成算法研究.深圳大学学报(理工版).2004,21(4):295-300
    [142]佘跃心.基于Kriging法的土性参数估计.建筑科学.2003,19(2):42-45
    [143]曹鸿钧,段宝岩.基于Kriging模型的后优化近似研究.机械设计与研究.2004,20(5):11-13
    [144]张小红,程世来,许晓东.基于Kriging统计的GPS高程拟合方法研究.大地测量与地球动力学.2007,27(2):47-51
    [145]游海龙,贾新章.基于遗传算法的Kriging模型构造与优化.计算机辅助设计与图形学学报.2007,19(1):65-68
    [146]张巍.利用Kriging方法生成特定人脸的三维网格体.信息技术.2004,28(7):14-16
    [147]方华.可靠性强化试验道路强化系数应用研究:[东南大学硕士学位论文].南京:东南大学,2003