覆冰分裂输电导线舞动的强非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电导线的舞动研究是一项国际上十分重视并广泛研究的重要课题,既有重要的学术价值,又有非常重大的社会经济意义。由于其学科涉及面较宽,影响因素复杂且随机因素较多,研究工作涉及到理论研究、计算机仿真、空气动力学参数试验、模拟试验和现场实施,因而耗资巨大,研究周期较长。至今为止,尽管研究者众多,历时多年,重要成果仍然很少,学术专著至今罕见。本文通过试验得出了关于覆冰分裂输电导线的动力学参数,建立了关于输电导线单自由度滞后非线性模型和考虑到耦合振动的两自由度的非线性模型,并对此进行了非线性动力学分析(分岔和混沌)。具体获得的主要研究成果(创新点)如下:
     覆冰分裂输电导线空气动力学参数的确定。首次通过试验,得到了关于覆冰分裂输电导线的动力学参数(升力系数,阻力系数和扭转系数)。在本文研究之前,从现有文献和资料来看,关于覆冰单根导线的试验仅有国外的尼格尔等人完成的覆冰单根导线的空气动力参数试验和国内的中山口舞动治理工程空气动力试验两个。有关分裂输电导线的试验在本文之前没有见到。
     覆冰分裂导线的滞后非线性无量纲单自由度系统模型的建立。建立了关于覆冰分裂输电导线的单自由度无量纲滞后非线性数学模型。本文基于试验数据,在建立单自由度无量纲滞后模型的基础之上,对系统进行非线性分析,建立了分岔参数和物理参数之间的对应关系,并利用奇异性理论得到了系统的转迁集和分岔图。最后得到了开折参数对于系统的相互影响关系。
     考虑到耦合因素的覆冰导线两自由度无量纲系统模型的建立。覆冰输电导线由于其质量上存在着偏心和风功角的变化,会同时产生惯性力耦合和空气动力学耦合,分裂导线亦是如此。本文在试验数据的基础上,建立了两自由度的非线性模型并在此技术之上进行了非线性分岔和混沌分析,得到了覆冰分裂输电导线系统的最简规范形。进一步得到了系统的普适开折参数和原系统参数之间的关系。讨论了系统的余唯2分岔,揭示了个参数对覆冰分裂输电导线系统动力学行为的影响。
     强非线性系统和弱非线性系统的判据式的确立。基于所建立的两自由度非线性数学模型,从理论上证明了覆冰分裂输电导线系统在铅垂方向上的振动隶属于强非线性振动系统,而在扭转方向上的振动隶属于弱非线性系统。
The galloping of the iced transmission line is an international research topic. Manyresearchers have paid more attention to this problem which not only has importantacademic value, but also has great social and economic significance. The topic involvesmany filed and there are many complex factors in the proceeding of study, such as thatdesign theory study, computer simulation, aerodynamics parameter identification,analog simulation and file trials. So it is expensive and has a long study period.Although there are so many researchers in the world until now, the achievement aboutthe galloping is still very little and the academic monographs are hard to be funded. Inour study, the air dynamics parameters are firstly obtained through the wind tunnel testof Tianjin University. Then a new one-degree-of-freedom hysteretic nonlinear modeland a two-degree-of-freedom nonlinear model are constructed. And then base on theexperiment data, the analysis of nonlinear dynamics (bifurcation and chaos) isinvestigated via numerical simulation. The main achievements (creative ideas) are asfollows:
     The aerodynamics parameters of the quad iced bundle conductors are identified:the aerodynamics parameters (lift coefficient, drag coefficient and torsional coefficient)are firstly be obtained through the wind tunnel in the world. According the existingliterature, there are only two tests about the single conductor: one is aerodynamicparameters experiment by O. Nigol in Canada, and another is anti-gallopingaerodynamic experiment in Zhongshan export. But before our experiment, we can findany experiment about the quad iced bundle conductor.
     A new one-degree-of-freedom hysteretic nonlinear model is constructed about thequad iced bundle conductors: In our study, consider the structure characteristic of theconductor, we give a non-dimensional hysteretic nonlinear model. The bifurcationequation is obtained by applying the undetermined fundamental frequency method ofthe complex normal form. The sensitivity parameters and its range of values areobtained to analyze and to control the galloping the quad iced bundle conductor.
     A new two-degree-of-freedom nonlinear model is constructed about the quad icedbundle conductors: Due to that the quality of the eccentric conductor and wind attachangle are changed, there are both inertial force coupled and aerodynamics force coupled, so a new model is developed to consider this coupled force. By applying centermanifold and invertible linear transformation, the co-dimension-2bifurcation isanalyzed. The relationships of parameters between this system and the original systemare obtained to analyze and to control the galloping of the quad iced bundle conductor.The Lyapunov exponent and the Lyapunov dimension are investigated via numericalsimulation to present a rigorous proof of existence of chaos.
     A new criterion formula is established to distinguish which system (strongnonlinear system or weekly nonlinear system) the quad iced bundle conductors isbelong to. Based on the two-degree-of-freedom nonlinear model and the criterionformula, we find that the vibration in the vertical direction is strong nonlinear vibrationand in the torsional direction is weakly nonlinear vibration.
引文
[1] Bendixson I., Sur les courbes définies par des équationsdifférentielles, Acta Mathematica,1901,24(1):1-88
    [2] Poincaré H., Magini R., Les méthodes nouvelles de la mécaniquecéleste, Il Nuovo Cimento (1895-1900),1899,10(1):128-130
    [3] andronov A.A., Vitt A.A., Khaikin S.E., Theory of oscillators:Dover Publications,1987
    [4] Lorenz E.N., Deterministic nonperiodic flow, Journal of TheAtmospheric Sciences,1963,20(2):130-141
    [5] Ruelle D., Takens F., On the nature of turbulence,Communications in mathematical physics,1971,20(3):167-192
    [6] May R.M., Biological populations with nonoverlappinggenerations: stable points, stable cycles, and chaos, Science,1974,186(4164):645-647
    [7] R ssler O.E., An equation for continuous chaos, Physics LettersA,1976,57(5):397-398
    [8] Li T.Y., Yorke J.A., Period three implies chaos, Americanmathematical monthly,1975:985-992
    [9] Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S., Geometryfrom a time series, Physical Review Letters,1980,45(9):712-716
    [10] Takens F., Detecting strange attractors in turbulence, Dynamicalsystems and turbulence, Warwick1980,1981:366-381
    [11] Ma é R., On the dimension of the compact invariant sets ofcertain non-linear maps, Dynamical systems and turbulence,Warwick1980,1981:230-242
    [12] Casdagli M., Eubank S., Farmer J.D., Gibson J., State spacereconstruction in the presence of noise, Physica D: NonlinearPhenomena,1991,51(1):52-98
    [13] Sauer T., Yorke J.A., Casdagli M., Embedology, Journal ofStatistical Physics,1991,65(3):579-616
    [14] Farmer J.D., Ott E., Yorke J.A., The dimension of chaoticattractors, Physica D: Nonlinear Phenomena,1983,7(1):153-180
    [15] Theiler J., Estimating fractal dimension, Journal of the OpticalSociety of America A,1990,7(6):1055-1073
    [16] Oseledec V.I., A multiplicative ergodic theorem. Lyapunovcharacteristic numbers for dynamical systems, Trans. Moscow Math.Soc,1968,19(2):197-231
    [17] Kolmogorov A.N., A new metric invariant of transient dynamicalsystems and automorphisms in Lebesgue spaces, Doklady AkademiiNauk SSSR,1958,861
    [18] Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.S., Theanalysis of observed chaotic data in physical systems, Reviewsof modern physics,1993,65(4):1331
    [19] Kantz H., Schreiber T., Mackay R.S., Nonlinear time seriesanalysis: Cambridge university press Cambridge,1997
    [20] Jones S.E., Remarks on the perturbation process for certainconservative systems, International Journal of Non-linearMechanics,1978,13(2):125-128
    [21] Burton TD, A perturbation method for certain non-linearoscillators, International Journal of Non-linear Mechanics,1984,19(5):397-407
    [22] Cheung YK, Chen SH, Lau SL, A modified Lindstedt-Poincaré methodfor certain strongly non-linear oscillators, InternationalJournal of Non-linear Mechanics,1991,26(3):367-378
    [23] Franciosi C., Tomasiello S., The use of Mathematica for theanalysis of strongly nonlinear two-degree-of-freedom systems bymeans of the modified Lindstedt–Poincare method, Journal ofSound and Vibration,1998,211(2):145-156
    [24] Zhu SJ, Zheng YF, Fu YM, Analysis of non-linear dynamics of atwo-degree-of-freedom vibration system with non-linear dampingand non-linear spring, Journal of Sound and Vibration,2004,271(1):15-24
    [25]唐驾时,求强非线性系统次谐共振解的MLP方法,应用数学和力学,2000,21(10):1039-1045
    [26]徐兆,非线性力学中一种新的渐近方法,力学学报,1985,17(3):266-271
    [27] Xu Z., Cheung YK, Averaging method using generalized harmonicfunctions for strongly non-linear oscillators, Journal of Soundand Vibration,1994,174(4):563-576
    [28] Zhao X., Nonlinear time transformation method for strongnonlinear oscillation systems, Acta Mechanica Sinica,1992,8(3):279-288
    [29] Xu Z., Cheung YK, A non-linear seales method for strongly non-linear oscillators, Nonlinear Dynamics,1995,7(3):285-299
    [30] AYT L., QC Z., Complex normal form for strongly non-linearvibration systems exemplified by Duffing–van der Pol equation,Journal of Sound and Vibration,1998,213(5):907-914
    [31]王炜,张琪昌,田瑞兰,两自由度强非线性振动系统的渐近解及分岔分析,振动与冲击,2008,27(005):130-133
    [32]王炜,复规范形理论的应用问题研究,博士,天津大学,2006
    [33]万浩川,张琪昌,王炜,复规范形理论在研究三自由度强非线性振动问题中的应用,振动与冲击,2010,29(008):189-194
    [34] Li S., Liao S.J., An analytic approach to solve multiplesolutions of a strongly nonlinear problem, Applied Mathematicsand Computation,2005,169(2):854-865
    [35] He J.H., Linearized perturbation technique and its applicationsto strongly nonlinear oscillators, Computers&Mathematics withApplications,2003,45(1):1-8
    [36]孙中奎,徐伟,杨晓丽,许勇,基于参数展开的同伦分析技术及其应用,力学学报,2006,37(5):667-672
    [37]唐驾时,尹小波,一类强非线性振动系统的分叉,力学学报,1996,28(3):363-369
    [38] Tang J., Qin J., Xiao H., Bifurcations of a generalized van derPol oscillator with strong nonlinearity, Journal of Sound andVibration,2007,306(3):890-896
    [39]毕勤胜,陈予恕, Duffing系统解的转迁集的解析表达式,力学学报,1997,29(5):573-581
    [40]毕勤胜,陈予恕,强Duffing系统的周期共振解及其转迁集,振动工程学报,1997,10(1):29-34
    [41]毕勤胜,陈予恕,强非线性Duffing系统倍周期分叉,振动工程学报,1997,10(002):183-189
    [42]黄赪彪,强非线性动力系统周期解分析,应用力学学报,1994,11(004):1-10
    [43] Gottlieb HPW, Harmonic balance approach to periodic solutionsof non-linear jerk equations, Journal of Sound and Vibration,2004,271(3):671-683
    [44] Xu Z., Chan HSY, Chung KW, Separatrices and limit cycles ofstrongly nonlinear oscillators by the perturbation-incrementalmethod, Nonlinear Dynamics,1996,11(3):213-233
    [45] Zhang Y., Lu Q., Homoclinic bifurcation of strongly nonlinearoscillators by frequency-incremental method, Communications inNonlinear Science and Numerical Simulation,2003,8(1):1-7
    [46] Ge Z.M., Ku F.N., A Melnikov method for strongly odd nonlinearoscillators, Japanese Journal of Applied Physics,1998,37(part1):1021-1028
    [47] Fu-Neng G.Z.M.K., Subharmonic Melnikov functions for stronglyodd non-linear oscillators with large perturbations, Journal ofSound and Vibration,2000,236(3):554-560
    [48] Belhaq M., Fiedler B., Lakrad F., Homoclinic connections instrongly self-excited nonlinear oscillators: the Melnikovfunction and the elliptic Lindstedt–Poincaré method, NonlinearDynamics,2000,23(1):67-86
    [49] Zaki K., Noah S., Rajagopal KR, Srinivasa AR, Effect ofnonlinear stiffness on the motion of a flexible pendulum,Nonlinear Dynamics,2002,27(1):1-18
    [50] Henon M., Heiles C., The applicability of the third integral ofmotion: some numerical experiments, The Astronomical Journal,1964,69(1):73
    [51] Arnold V.I., Instability of dynamical systems with severaldegrees of freedom(Instability of motions of dynamic system withfive-dimensional phase space), Soviet mathematics,1964,5(1):581-585
    [52] Smale S., Differentiable dynamical systems, Bulletin of theAmerican Mathematical Society,1967,73(6):747-817
    [53] Mel'nikov V.K., On the stability of a center for time-periodicperturbations, Trudy moskovskogo matematicheskogo obshchestva,1963,12(1):3-52
    [54] Shilnikov LP, A case of the existence of a countable number ofperiodic motions(Point mapping proof of existence theoremshowing neighborhood of trajectory which departs from andreturns to saddle-point focus contains denumerable set ofperiodic motions), Soviet mathematics,1965,6(1):163-166
    [55] Holmes P., A nonlinear oscillator with a strange attractor,Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences,1979,292(1394):419-448
    [56] il'Nikov LP, A contribution to the problem of the structure ofan extended neighborhood of a rough equilibrium state of saddle-focus type, Sbornik: Mathematics,1970,10(1):91-102
    [57]张琪昌,田瑞兰,王炜,一类机电耦合非线性动力系统的混沌动力学特征,物理学报,2008,57(5):2799-2804
    [58] Li Z., Chen G., Halang W.A., Homoclinic and heteroclinic orbitsin a modified Lorenz system, Information Sciences,2004,165(3):235-245
    [59] Liao X., Chen G., Hopf bifurcation and chaos analysis of Chen ssystem with distributed delays, Chaos, Solitons&Fractals,2005,25(1):197-220
    [60] LI T., Chen G., On Homoclinic and Heteroclinic Orbits of Chen'sSystem, International Journal of Bifurcation and Chaos,2006,16(10):3035-3041
    [61] Vakakis AF, Azeez MFA, Analytic approximation of the homoclinicorbits of the Lorenz system at=10, b=8/3and=13.926,Nonlinear Dynamics,1998,15(3):245-257
    [62] Mikhlin Y.V., Analytical construction of homoclinic orbits oftwo-and three-dimensional dynamical systems, Journal of Soundand Vibration,2000,230(5):971-983
    [63] Holmes P.J., Marsden J.E., Melnikov s method and Arnolddiffusion for perturbations of integrable Hamiltonian systems,Journal of Mathematical Physics,1982,23(1):669
    [64] Wiggins S., Global bifurcations and chaos: analytical methods:Springer-Verlag New York,1988
    [65] Kova i G., Wiggins S., Orbits homoclinic to resonances, withan application to chaos in a model of the forced and dampedsine-gordon equation, Physica D: Nonlinear Phenomena,1992,57(1):185-225
    [66] Zhang W., Wang F., Yao M., Global bifurcations and chaoticdynamics in nonlinear nonplanar oscillations of a parametricallyexcited cantilever beam, Nonlinear Dynamics,2005,40(3):251-279
    [67] Zhang W., Global and chaotic dynamics for a parametricallyexcited thin plate, Journal of Sound and Vibration,2001,239(5):1013-1036
    [68] Guo B., Chen H., Homoclinic orbit in a six-dimensional model ofa perturbed higher-order nonlinear Schr dinger equation,Communications in Nonlinear Science and Numerical Simulation,2004,9(4):431-441
    [69]刘曾荣,混沌研究中的解析方法上海:上海大学出版社,2002
    [70]陈立群,刘延柱,任意圆轨道上磁性刚体航天器的混沌姿态运动及其控制,振动工程学报,2001,14(4):414-418
    [71]李银山,李伟锋,各种板边条件下大挠度圆板的全局分岔和混沌,天津大学学报:自然科学与工程技术版,2001,34(6):718-722
    [72] Ravichandran V., Chinnathambi V., Rajasekar S., Homoclinicbifurcation and chaos in Duffing oscillator driven by anamplitude-modulated force, Physica A: Statistical Mechanics andits Applications,2007,376(1):223-236
    [73] Kaper T.J., Kovacic G., Multi-bump orbits homoclinic toresonance bands, Transactions of The American MathematicalSociety,1996,348(10):3835-3888
    [74] Camassa R., Kova i G., Tin S.K., A Melnikov method forhomoclinic orbits with many pulses, Archive for RationalMechanics and Analysis,1998,143(2):105-193
    [75] Feng ZC, Liew KM, Global bifurcations in parametrically excitedsystems with zero-to-one internal resonance, Nonlinear Dynamics,2000,21(3):249-263
    [76]陈立群,带慢变角参数摄动平面非Hamilton可积系统的混沌,应用数学和力学,2001,22(11):1172-1176
    [77] Yeo MH, Lee WK, Evidences of global bifurcations of an imperfectcircular plate, Journal of Sound and Vibration,2006,293(1):138-155
    [78] Liu X., Fu X., Zhu D., Bifurcation of Homoclinic Orbits withSaddle-Center Equilibrium, Chinese Annals of Mathematics-SeriesB,2007,28(1):81-92
    [79] Malhotra N., Sri Namachchivaya N., McDonald RJ, Multipulseorbits in the motion of flexible spinning discs, Journal ofNonlinear Science,2002,12(1):1-26
    [80]梁建术,陈予恕,一类含平方,立方非线性项内共振两自由度系统的全局分岔,应用力学学报,2002,19(4):62-67
    [81] Zhang W., Tang Y., Global dynamics of the cable under combinedparametrical and external excitations, International Journal ofNon-linear Mechanics,2002,37(3):505-526
    [82] Yao M., Zhang W., Multipulse Shilnikov orbits and chaoticdynamics for nonlinear nonplanar motion of a cantilever beam,International Journal of Bifurcation and Chaos,2005,15(12):3923-3952
    [83] Yao MH, Zhang W., Shilnikov-type multipulse orbits and chaoticdynamics of a parametrically and externally excited rectangularthin plate, International Journal of Bifurcation and Chaos,2007,17(03):851-875
    [84] Zhang W., Yao M., Multi-pulse orbits and chaotic dynamics inmotion of parametrically excited viscoelastic moving belt, Chaos,Solitons&Fractals,2006,28(1):42-66
    [85] Zhang W., Yao MH, Zhan XP, Multi-pulse chaotic motions of arotor-active magnetic bearing system with time-varyingstiffness, Chaos, Solitons&Fractals,2006,27(1):175-186
    [86] Feigenbaum M.J., Quantitative universality for a class ofnonlinear transformations, Journal of Statistical Physics,1978,19(1):25-52
    [87] Rand R.H., Analytical approximation for period-doublingfollowing a Hopf bifurcation, Mechanics Research Communications,1989,16(2):117-123
    [88] Belhaq M., Houssni M., Symmetry-breaking and first period-doubling following a Hopf bifurcation in a three dimensionalsystem, Mechanics Research Communications,1995,22(3):221-231
    [89] Berns D.W., Moiola J.L., Chen G., Detecting period-doublingbifurcation: an approximate monodromy matrix approach,Automatica,2001,37(11):1787-1795
    [90] Oldeman B.E., Krauskopf B., Champneys A.R., Numerical unfoldingsof codimension-three resonant homoclinic flip bifurcations,Nonlinearity,2001,14(3):597
    [91] Homburg A.J., Krauskopf B., Resonant homoclinic flipbifurcations, Journal of Dynamics and Differential Equations,2000,12(4):807-850
    [92]钟顺,陈予恕,一类液固耦合晃动稳定性问题的参数分析,第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集,2011
    [93] Hartog J.P.D., Transmission line vibration due to sleet,American Institute of Electrical Engineers,1932,51(4):1074-1076
    [94] Nigol O., Buchan PG, Conductor galloping-part II Torsionalmechanism, Power Apparatus and Systems,1981, PAS-100(2):708-720
    [95] Biswas SK, Riaz H., Ahmed NU, Modal dynamics and stabilizerdesign for galloping transmission lines, Electric Power SystemsResearch,1987,12(3):175-182
    [96] McConnell KG, Chang C.N., A study of the axial-torsionalcoupling effect on a sagged transmission line, ExperimentalMechanics,1986,26(4):324-329
    [97] Rowbottom MD, Method of calculating the vulnerability of anoverhead transmission line to faults caused by galloping,Generation, Transmission and Distribution, IEE Proceedings CIET,1981,334-341
    [98] Limin S., Feng C., A new type of damper used for preveninggalloping of the electric power transmission line, Journal ofMechanical Strength,1998,20(3):216-218
    [99] Zeng H., Tianhong Q., The Computation of Overhead and IcedMulticonductor Galloped with Torsional Mechanism, Journal ofHuazhong University of Science and Technology,1998,26(10):17-19
    [100] Wanping L., Xinxiang Y., Lizhi Z., Static aerodynamiccharacteristics of the galloping of bundled iced powerTransmission Lines, Acta Aerodynamica Sinica,1995,13(4):1-8
    [101] Zhang JH, Shi YH, Liu GX, Hogg BW, Simulation of transmissionline galloping using finite element method, Advances in PowerSystem Control, Operation and Management,1993. APSCOM-93.,2ndInternational Conference onIET,1993,644-648
    [102] Yu P., Desai YM, Shah AH, Popplewell N., Three-degree-of-freedommodel for galloping. Part I: formulation, Journal of EngineeringMechanics,1993,119(12):2404-2425
    [103] Yu P., Desai YM, Popplewell N., Shah AH, Three-degree-of-freedommodel for galloping. Part II: Solutions, Journal of EngineeringMechanics,1993,119(12):2426-2448
    [104] Gopalan TV, New excitation system for indoor testing of overheadconductors, Journal of Energy Engineering,1993,119(3):159-167
    [105] Yamaoka M., Hasegawa J., Fundamental characteristics of overheadtransmission line galloping determined by simulatingcalculation using equivalent single-conductor method,Electrical Engineering in Japan,1995,115(7):11-28
    [106] McComber P., Paradis A., Simulation du Galop d une forme bi-dimensionnelle d une cable givre, Transactions of the CanadianSociety for Mechanical Engineering,1995,19(2):75-92
    [107] Diana G., Cheli F., Manenti A., Nicolini P., Tavano F.,Oscillation of bundle conductors in overhead lines due toturbulent wind, IEEE Transactions on Power Delivery,1990,5(4):1910-1922
    [108] Zhang Q., Popplewell N., Shah AH, Galloping of bundle conductor,Journal of sound and vibration,2000,234(1):115-134
    [109] Liu X., Yan B., Zhang H., Zhou S., Nonlinear numericalsimulation method for galloping of iced conductor, AppliedMathematics and Mechanics,2009,30(4):489-501
    [110] SUN Z., LOU W., Nonlinear finite element analysis on gallopingof ice-coated transmission line, Power System Technology,2010,34(12):214-219
    [111] CHEN H., WANG C., LI J., WANG C., XU G., Application of on-linemonitoring technologies for UHV AC transmission lines, PowerSystem Technology,2009,31(22):7-12
    [112] Fu G., Wang L., Guan Z., Hou L., Meng X., Macalpine M.,Simulations of the controlling effect of interphase spacers onconductor galloping, IEEE Transactions on Dielectrics andElectrical Insulation,2012,19(4):1325-1334
    [113] Li L., Ji K., Rui X., Galloping region division method of powertransmisson lines based on galloping mechanism, Advances inElectric and Electronics,2012:433-440
    [114] Liu X.J., Sun X.Q., Zhang S.X., Liu P., Liu B., Comparativeanalysis of dynamic characteristics under two iced conductorgalloping models, Applied Mechanics and Materials,2011,94(1685-1689
    [115] Zi F., Shuying H., Kuntao Z., Qichang Z., Effect of interphasecomposite spacer on transmission line galloping control, DigitalManufacturing and Automation (ICDMA),2011,485-488
    [116] Hao S.Y., Zhou K.T., Chen Z.G., Zhang Q.C., Finite elementanalysis on dynamic tension of quad-bundle conductor oftransmission line galloping, Applied Mechanics and Materials,2011,48(523-526
    [117] Hua-jin CAO, Galloping of transmission tower-line system andanti galloping research, Journal of Vibration and Shock,2011,30(12):245-249
    [118] Cai M., Yan B., Zhou L., Zhou S., Investigation on aerodynamiccoefficients of iced quad-bundled conductor, Power and EnergyEngineering Conference (APPEEC),2011,1-4
    [119] Xinmin L., Kuanjun Z., Bin L., Research of experimentalsimulation on aerodynamic character for typed iced conductor,AASRI Procedia,2012,2(1):106-111
    [120] Jun G.G., Wei H.J., Lei W., Research on intelligent sensormonitoring network of high-voltage conductor galloping,Advanced Power System Automation and Protection (APAP),2011International Conference on IEEE,2011,691-693
    [121] Wu S.J., Zhang Z.L., Liu Z.H., Hu J.C., Study on dynamicsimulation of4-bundle ice-coated conductor galloping based on3-D model, Applied Mechanics and Materials,2012,105(474-477
    [122] Gao S.Z., Xu G.B., Study on the Relation between gallopingconductor and the parameter of construction and environment,Advanced Materials Research,2012,374(1):2279-2282
    [123] Huabiao Z., Xinye L., Lijuan Z., Lijuan H., Theoretical andnumerical analysis of galloping of bundle conductors, Power andEnergy Engineering Conference (APPEEC),2011
    [124] Li L., Cheng Z.Y., Hu Z.D., Study on numerical simulation oficed conductor galloping for multi-span power transmission lines,Applied Mechanics and Materials,2011,44(1):2671-2675
    [125] Li G.C., Huang X.B., Zhao L., Tao B.Z., Transmission linegalloping acceleration sensor location algorithm, High VoltageApparatus,2011,47(5):30-34
    [126] Fu G., Wang L., Guan Z., Wang C., Dynamic load on compositeinsulators using in UHVDC lines due to conductor galloping,Electrical Insulation and Dielectric Phenomena (CEIDP),2011,369-372
    [127]朱宽军,尤传永,赵渊如,输电线路舞动的研究与治理,电力建设,2004,25(12):18-21
    [128]尤传永,导线舞动稳定性机理及其在输电线路上的应用,电力设备,2004,5(6):13-17
    [129]王少华,蒋兴良,孙才新,输电线路导线舞动的国内外研究现状,高电压技术,2006,31(10):11-14
    [130]樊社新,何国金,廖小平,朱江新,林义忠,结冰输电线的初始扭转角,水电能源科学,2006,24(3):69-70
    [131]于俊清,郭应龙,肖晓晖,输电导线舞动的计算机仿真,武汉大学学报(工学版),2002,35(1):39-43
    [132]赵作利,输电线路导线舞动及其防治,高电压技术,2004,30(2):57-58
    [133]龙小乐,鲍务均,郭应龙,吴庆呜,输电导线覆冰研究,武汉水利电力大学学报,1996,29(5):102-107
    [134]蒋兴良,周仿荣,王少华,孙才新,输电导线覆冰舞动机理及防治措施,电力建设,2008,29(9):14-19
    [135]李欣业,张华彪,侯书军,高仕赵,覆冰输电导线舞动的仿真分析,振动工程学报,2010,23(001):76-85
    [136]李欣业,张华彪,高仕赵,李晓雷,三自由度模型覆冰输电导线舞动的数值仿真分析,河北工业大学学报,2010,39(003):1-5
    [137]张华彪,李欣业,李银山,输电导线舞动稳定性的理论与仿真分析,第八届全国动力学与控制学术会议论文集,2008
    [138]蔡君艳,刘习军,张素侠,覆冰四分裂导线舞动近似解析解分析
    [139] Zhang W., Cao D., Local and global bifurcations of L-mode to H-mode transition near plasma edge in Tokamak, Chaos, Solitons&Fractals,2006,29(1):223-232
    [140] Pisarenko GS, The equation of hysteresis loop contourscharacterizing the energy dissipation in a material duringvibration, International Applied Mechanics,1969,5(2):182-189
    [141] Davidenkov NN, Hysteretic property of the ferrous metal, Journalof Technical Physics,1939,8(1):483-489
    [142] Low YM, Frequency domain analysis of a tension leg platform withstatistical linearization of the tendon restoring forces, MarineStructures,2009,22(3):480-503
    [143] Nayfeh A.H., The method of normal forms: Wiley-VCH,2011
    [144] Golubitsky M., Schaeffer DG, Singularities and groups inbifurcation theory, Vol.1Springer, New York,1985,
    [145] Zhang Qi Chang, Wang Wei, Liu Fu Hao, High-codimensional staticbifurcations of strongly nonlinear oscillator, Chinese PhysicsB,2008,17(11):4123-4128
    [146] Van Dyke P., Laneville A., Galloping of a single conductorcovered with a D-section on a high-voltage overhead test line,Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6):1141-1151
    [147] Havard DG, Pon CJ, Pohlman JC, Galloping control permits towerhead compaction and line upgrading, IEEE Transactions on PowerDelivery,1987,2(3):939-946
    [148] Rawlins CB, Analysis of conductor galloping field observations-single conductors, IEEE Transactions on Power Apparatus andSystems,1981, PAS-100(8):3744-3753
    [149] Havard DG, Detuning for controlling galloping of singleconductor transmission line, Electric Power Research Institute,1999,29(4):409-418
    [150] Lu ML, Chan JK, An efficient algorithm for aeolian vibration ofsingle conductor with multiple dampers, IEEE Transactions onPower Delivery,2007,22(3):1822-1829
    [151] Verma H., The stockbridge damper as a continuous hysteric systemin single overhead transmission lines, Master, Citeseer,2002
    [152] Shimizu M., Sato J., Galloping observation and simulation of a4-conductor bundle transmission line, Journal of StructuralEngineering,2001,47(2):479-488
    [153] Rutjes T., Aanenb L., Wind-Induced vibrations: coupled analysisusing wind tunnel and FEM
    [154] Ge YJ, Lin ZX, Cao FC, Pang JB, Xiang HF, Investigation andprevention of deck galloping oscillation with computational andexperimental techniques, Journal of Wind Engineering andIndustrial Aerodynamics,2002,90(12):2087-2098
    [155] Xiao X., Wu J., Simulation and effects evaluation of anti-galloping devices for overhead transmission lines, AutomationScience and Engineering, CASE2008,808-813
    [156]王丽新,杨文兵,杨新华,袁俊杰,输电线路舞动的有限元分析,华中科技大学学报:城市科学版,2004,21(1):76-80
    [157]杨新华,王丽新,王乘,陈传尧,考虑多种影响因素的导线舞动三维有限元分析,动力学与控制学报,2004,2(4):84-89
    [158]张伟,含有参数激励的非线性动力系统的高余维和复杂动力学,博士,天津大学,1997