覆冰输电线路舞动试验研究和非线性动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舞动是导线覆冰后在风荷载作用下产生的自激振动。舞动对输电线路危害极大,引起的动张力会造成相间闪络、导/地线断股、间隔棒撕裂等事故。尤其是在特定气象条件下,导线舞动的持续时间可长达几天,从而有可能导致杆塔构件撕裂、失稳甚至倒塔等事故的发生。近年来,随着我国电网规模的迅速发展和恶劣气候的频繁出现,电力系统发生舞动事故的频率和对电力行业的危害程度呈显著增加的趋势,严重威胁着电力能源的正常输送和国民经济的稳定发展。因此,深入开展覆冰输电线路舞动的试验研究和理论分析、完善输电线路抗舞设计方法和提供相关技术支撑和科学依据,有着十分重要的工程意义和经济价值。本文的研究工作主要包括以下几个方面:
     1.覆冰输电线路静张力对横担作用特征的研究:以在线路覆冰作用下横担严重破坏的转角耐张塔为研究对象,制作大比例输电塔节段模型,并按相似理论设计、加工了覆冰导线模型,对输电塔进行了模拟导线重覆冰状态下的静力加载试验。同时考虑连接偏心、节点板和螺栓长度等细节对构件传力路径的影响,建立了精细化的中横担有限元模型,对静力试验进行全过程的数值模拟,并与关键截面处的荷载-变形特征试验结果进行对比。在此基础上通过非线性屈曲计算,考察了覆冰导线静张力作用下横担的失效模式及薄弱环节。
     2.输电塔线体系舞动响应和杆塔失效机理的试验研究:以在舞动事故中横担严重破坏的某转角耐张塔研究对象,基于模型动力相似原理,设计制作了弹性边界条件下的大比例输电塔节段模型和能够模拟不同覆冰参数的导线模型,并首次研制开发了模拟覆冰导线舞动的试验加载装置。在此基础上,于试验室条件下再现了导线舞动时的动张力和运动特征,并进行了不同参数下的输电塔线体系舞动试验,研究了覆冰厚度、舞动幅值以及频率对塔线体系响应特征的影响。同时,结合实际线路舞动时的特征参数,于试验室条件下进行了覆冰塔线体系舞动事故的反演,并根据试验测得的构件动应力幅值,计算了输电塔构件在导线舞动作用下的疲劳寿命。最后,综合分析塔线体系舞动试验和疲劳寿命的计算结果,揭示了舞动作用下输电杆塔失效的根本原因。
     3.覆冰输电线路舞动非线性动力学与双参数分岔分析:建立了考虑竖直向、水平向和扭转向三维非线性耦合效应的连续体覆冰分裂导线舞动方程,并根据Galerkin积分和Routh-Hurwitz稳定性判据准则标识系统在参数空间中的稳定域和非稳定域。在此基础上,选定风速、初始风攻角以及竖向阻尼比为分岔参数,应用中心流形降维方法求解了原系统在平衡点附近的约化系统。通过将分岔参数视为系统状态变量的方式,把含参数的约化系统转化为不含参数的扩张系统,并利用规范形理论分段求解了扩张系统的Hopf分岔规范形,研究了双参数同时变化对导线舞动响应的影响。
     4.分裂导线舞动非线性数值模拟:基于完全拉格朗日格式,建立了适用于单导线和分裂导线舞动数值模拟的非线性有限元舞动分析方法。采用具有扭转自由度的三节点抛物线索单元离散覆冰单导线。对于覆冰分裂导线,在单导线有限元法的基础上,利用欧拉梁单元模拟间隔棒的运动过程,结合梁节点弯曲自由度缩聚法实现了间隔棒与分裂子导线之间的耦合,并运用随转坐标系求解舞动过程中的梁节点不平衡力。在此基础上,结合覆冰分裂导线气动力测试结果,研究了风场特性、导线覆冰厚度和初始凝冰角对输电线路起舞机理和响应特征的影响。
     5.三维瞬态风场下覆冰导线舞动数值模拟:根据随机流场生成方法和三维风速功率谱,逐点模拟了覆冰分裂导线周边的脉动风速场,并从瞬态流场的不可压缩特征、风功率谱、时间相关函数以及空间相关系数等统计特征证明了风场模拟方法的有效性和合理性。运用分裂导线舞动非线性有限元法对输电线路在均匀流场、一维脉动风速场和三维瞬态风场下进行了舞动瞬态分析,在此基础上讨论了风速场瞬态效应对舞动响应的作用机制,
Galloping of power transmission line is a typical self-excited vibration due to wind action on an ice or wet snow accretion on the electrical conductors. The occurrence of galloping could cause large dynamic tension acting on transmission lines and towers and induce a series of accidents, such as flashover between different interphases, power/ground line and spaceres broken off. Especially during some special climate conditions, several days longer duration of galloping will bring great damage to tower components and even result in whole towers collapse. In recent years, due to the mushroom development of the power grid and frequent appearance of bad weather conditions, the galloping accident frequency and the damage to power system, which severely endanger the transmission of electrical power and stable development of national economy, has been significantly increased. Therefore, it has great engineering significance and economy value to promote the experimental and theoretical investigation on galloping of iced transmission line, improve anti-galloping design method and provide corresponding technical or scientific supports. The following research aspects are included in present paper:
     1. Study on mechanical features of tower cross arm under static tension of iced conductor:The segmental strain resistant corner tower model with1:4scale whose cross arm has been damaged during ice disaster was made according to similarity relationship, and the corresponding iced-conductor model was also established. Then the static experiment was conducted to simulate the tension of heavy iced-transmission line acting on tower. Meanwhile, the finite element model of middle cross arm was also founded precisely by taking into account the effects of connection eccentric, joint plate and the length of bolts on the force-transfer characteristic of members, then the whole test process was simulated and the comparison with experiment values was also obtained. On this basis, failure mode of cross arm was obtained by using the method of nonlinear bulking analysis.
     2. Experiment research on dynamic responses of transmission tower-line system and failure mechanism of tower under iced-conductor galloping:Taking a strain resistant corner tower as prototype whose cross arm was seriously damaged under iced-conductor galloping, a tower segmental model with elastic boundary condition and conductor model of different ice thickness were founded on the basis of the similarity theory of dynamic model, and the vibration experimental equipment used to simulate galloping responses of iced-conductor was developed at the first time. Based on that, dynamic tension and vibration features of galloping conductor were reconstructed under the laboratorial conditions. Then galloping experiment of transmission tower line was carried out, the effects of ice thickness, galloping amplitude and frequency on dynamic response of transmission tower-line system were discussed. According to thickness of ice and vibration amplitude obtained by field testing, the dynamic experiment of transmission tower-line was carried out under conductor galloping. Combining with the experimental results of dynamic stress, fatigue life of tower member was estimated. Finally, the real reason for tower collapse under iced-conductor galloping was determined based on the results of tower-line galloping experiment and tower member's fatigue life.
     3. Nonlinear dynamics and double parametric bifurcation analysis of iced transmission line:A three dimensional galloping model for iced-bundle conductor, considering non-linear coupling effects of vertical, horizontal and torsional direction, was approached to investigate the action mechanism of system parameters in stability and nonlinear dynamic responses based on Lagrange equation. Galerkin integral method and Routh-Hurwitz criterion were introduced to obtain stable and unstable region in parametric space. Choose wind velocity, initial wind attack angle and vertical damping ratio as bifurcation parameters, the reduced equations in the vicinity of bifurcation point were determined through central manifold theory. By regarding bifurcation parameters as state variables, the reduced system with parameters were converted to extended system without parameters, and then Hopf bifurcation equations sectional solution were calculated with the help of normal form theory in polar coordinates. Based on that, the features of simultaneous varieties of galloping in double parametric space were discussed in detail.
     4. Nonlinear numerical simulation for iced bundle conductor galloping:A dynamic nonlinear numerical model with the consideration of aerodynamic and geometric nonlinearities was established to simulate the galloping behavior of iced single and bundled conductors with arbitrary number of sub conductors on the basis of Total Lagrange finite element method. The three-node parabolic cable element with torsional degree of freedom was applied to discrete the single conductor. As for bundled conductor, the Euler beam element added into sub-conductors was used to simulate the movement of spacing rod. A high effective bending degree of freedom reduced method was introduced to simulate the coupling effects of cable and beam element. Meanwhile, the unbalance force vectors of beam element during galloping process were derived precisely by employing co-rotational coordinate system method. Finally, based on the aerodynamic force of iced-conductor with crescent shape obtained by wind tunnel experiment, the impact of turbulence, ice thickness and initial ice-coating angle on conductor galloping mechanism and dynamic responses were investigated.
     5. Numerical simulation of iced-conductor galloping in three dimensional fluctuating wind field:According to random flow generation method and three dimensional wind power spectral density function, the fluctuating wind field around iced transmission line was simulated point by point. Meanwhile, the statistical characteristics of fluctuating wind field, such as divergence free, power spectral density function, temporal correlation function and spatial correlation coefficients, were verified to illustrate the availability and reliability of presented wind filed simulating method. Then the galloping responses of iced bundled-conductor were determined by applying nonlinear finite element method in uniform flow, one dimensional and three dimensional fluctuating wind field. Based on that, the impact of turbulence on transmission line galloping was discussed in detail.
引文
[1]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.
    [2]朱宽军,付东杰,王景朝,等.架空输电线路的舞动及其防治[J].电力设备,2008,9(6):8-12.
    [3]陶礼兵,龚坚刚,吴明祥,等.500kV同塔双回线路舞动故障机理分析及整改措施[J].浙江电力,2011,30(001):8-11.
    [4]马建国.三峡输电工程防导线舞动的探讨[J].华中电力,1998,11(2):47-51.
    [5]胡安群.事故过后话导线覆冰舞动[J].河南电力科技信息,2003,2:1-2.
    [6]赵彦,姜虹羽,刘燕.南方冰雪灾害中输电电网破坏的原因及对策研究[J].防灾科技学院学报,2008,10(2):32-34.
    [7]刘有飞,吴素农,袁彦.浅谈输电线路覆冰导致电力倒塔原因及相关建议[J].华中电力,2008,21(2):71-72.
    [8]邵德军,尹项根,陈庆前,等.2008年冰雪灾害对我国南方地区电网的影响分析[J].电网技术,2009,33(5):38-43.
    [9]彭向阳,周华敏,潘春平.2008年广东电网输电线路冰灾受损情况及关键影响因素分析[J].电网技术,2009,33(9):108-112.
    [10]陆佳政,彭继文,张红先,等.2008年湖南电网冰灾气象成因分析[J].电力建设,2009,30(6):29-32.
    [11]杨靖波,李正,张强,等.2008年输电线路冰灾倒塔原因分析:2008中国科协防灾减灾论坛,郑州,2008[C].
    [12]刘春城,张庆华.大跨越输电塔线体系覆冰断线倒塔分析[J].黑龙江科技信息,2013,17:56-56.
    [13]Xie Q, Sun L. Failure mechanism and retrofitting strategy of transmission tower structures under ice load[J]. Journal of Constructional Steel Research,2012,74:26-36.
    [14]Shu Q, Yuan G, Guo G, et al. Limits to foundation displacement of an extra high voltage transmission tower in a mining subsidence area[J]. International Journal of Mining Science and Technology,2012,22(l):13-18.
    [15]Okamura T, Ohkuma T, Hongo E, et al. Wind response analysis of a transmission tower in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003,91(1):53-63.
    [16]孔伟,李华,杜启收.大跨越输电塔极限承载力的双重非线性分析[J].山西电力,2009,6:5-7.
    [17]谢强,孙力.覆冰荷载作用下500kV输电杆塔结构破坏机理试验分析[J].高电压技术,2010,36(12):3090-3096.
    [18]鞠彦忠,薛庆莲,熊心,等.输电塔在线路覆冰作用下的极限承载力分析[J].华东电力,2009,37(11):1838-1841.
    [19]田琪凌,伋雨林,陈振,等.500kV输电塔承载能力分析及优化设计[J].华中科技大学学报(城市科学版),2010,27(1):64-69.
    [20]陆佳政,刘纯,陈红冬,等.500kV输电塔线覆冰有限元计算[J].高电压技术,2007,33(10):167-169.
    [21]李雪,李宏男,黄连壮.高压输电线路覆冰倒塔非线性屈曲分析[J].振动与冲击,2009,28(5):111-114.
    [22]秦佳俊,柴维斯,李永航.输电塔覆冰倒塔的屈曲分析[J].广东工业大学学报,2011,28(2):27-30.
    [23]Jiang W Q, Wang Z Q, McClure G, et al. Accurate modeling of joint effects in lattice transmission towers[J]. Engineering Structures,2011,33(5):1817-1827.
    [24]Albermani F, Mahendran M, Kitipornchai S. Upgrading of transmission towers using a diaphragm bracing system[J]. Engineering Structures,2004,26(6):735-744.
    [25]Albermani F G A, Kitipornchai S. Numerical simulation of structural behaviour of transmission towers[J]. Thin-Walled Structures,2003,41(2-3):167-177.
    [26]Albermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers[J]. Engineering Failure Analysis,2009,16(6):1922-1928.
    [27]Prasad Rao N, Samuel Knight G M, Mohan S J, et al. Studies on failure of transmission line towers in testing[J]. Engineering Structures,2012,35:55-70.
    [28]J A M, R S A. Reliability analysis and full-scale testing of transmission tower[J]. Journal of Structural Engineering,1996,122(3):338-344.
    [29]Moon B, Park J, Lee S, et al. Performance evaluation of a transmission tower by substructure test[J]. Journal of Constructional Steel Research,2009,65(1):1-11.
    [30]谢强,孙力,林韩,等.500kV输电杆塔结构抗风极限承载力试验研究[J].高电压技术,2012,38(3):712-719.
    [31]谢强,孙力,张勇.500kV输电塔结构抗冰加固改造方法试验研究[J].中国电机工程学报,2011,31(16):108-114.
    [32]Keutgen R, Lilien J L. Benchmark cases for galloping with results obtained from wind tunnel facilities validation of a finite element model [J]. Power Delivery, IEEE Transactions on, 2000,15(1):367-374.
    [33]Nigol O, Buchan P G. Conductor Galloping Part I Den Hartog Mechanism[J]. Power Apparatus and Systems, IEEE Transactions on,1981, (2):699-707.
    [34]Nigol O, Buchan P G. Conductor Galloping-Part Ⅱ Torsional Mechanism[J]. Power Apparatus and Systems, IEEE Transactions on,1981, (2):708-720.
    [35]Shimizu M, Ishihara T, Phuc P V. A wind tunnel study on aerodynamic characteristics of ice accreted transmission lines [C].5th International colloquium on bluff body aerodynamics and applications,2004,369-372.
    [36]Fleming P H, Popplewell N. Wind Tunnel Studies on the Galloping of Lightly-Iced Transmission Lines[C] ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, 2010:155-164
    [37]Nagao F, Utsunomiya H, Noda M, et al. Aerodynamic properties of closely spaced triple circular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003,91(1):75-82.
    [38]李海若,郭海超,谢强.薄覆冰导线气动力特性风洞试验研究[J].电力建设,2013,34(3):12-16.
    [39]黄河.覆冰导线气动力特性的数值模拟[D].华中科技大学,2001.
    [40]吕翼.覆冰导线气动力特性的数值模拟研究[D].浙江大学,2008.
    [41]李万平.覆冰导线群的动态气动力特性[J].空气动力学学报,2000,18(4):413-420.
    [42]李万平,杨新祥.覆冰导线群的静气动力特性[J].空气动力学学报,1995,13(4):427-434.
    [43]李万平,黄河,何锃.特大覆冰导线气动力特性测试[J].华中科技大学学报(自然科学 版),2001.29(8):84-86.
    [44]马文勇,顾明,全涌,等.准椭圆形覆冰导线气动力特性试验研究[J].同济大学学报(自然科学版),2010,38(10):1409-1413.
    [45]王昕,楼文娟,沈国辉,等.覆冰导线气动力特性风洞试验研究[J].空气动力学学报,2011,29(5):573-579.
    [46]林巍.覆冰输电导线气动力特性风洞试验及数值模拟研究[D].浙江大学,2012.
    [47]肖正直,晏致涛,李正良,等.八分裂输电导线结冰风洞及气动力特性试验[J].电网技术,2009(5):90-94.
    [48]Chabart O, Lilien J L. Galloping of electrical lines in wind tunnel facilities[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74:967-976.
    [49]Muhammad B W, Takashi I, Muhammad W S. Galloping response prediction of ice-accreted transmission lines[C].4th Advances in Wind and Structures (AWAS'08),2008,876-885.
    [50]王昕,楼文娟,沈国辉.覆冰输电线路舞动气动阻尼识别[J].振动与冲击,2011,30(10):160-164.
    [51]刘小会.覆冰导线舞动非线性数值模拟方法及风洞模型试验[D].重庆大学,2011.
    [52]DenHartog J P. Transmission line vibration due to sleet[J]. American Institute of Electrical Engineers, Transactions of the,1932,51(4):1074-1076.
    [53]Yu P, Popplewell N, Shah A H. Instability trends of inertially coupled galloping:Part II: Periodic vibrations[J]. Journal of sound and vibration,1995,183(4):679-691.
    [54]Yu P, Popplewell N, Shah A H. Instability trends of inertially coupled galloping:Part I: Initiation[J]. Journal of sound and vibration,1995,183(4):663-678.
    [55]蔡延湘.输电线舞动新机理研究[J].中国电力,1998,31(10):62-66.
    [56]唐校友.线路舞动的低阻尼共振激发机理[J].东北电力大学学报(自然科学版),2006,26(1):65-70.
    [57]Alonso G, Meseguer J, P E Rez-Grande I. Galloping stability of triangular cross-sectional bodies:a systematic approach[J]. Journal of wind Engineering and industrial Aerodynamics, 2007,95(9):928-940.
    [58]Barrero-Gil A, Sanz-Andr E S A, Alonso G. Hysteresis in transverse galloping:The role of the inflection points[J]. Journal of Fluids and Structures,2009,25(6):1007-1020.
    [59]Biswas S K, Riaz H, Ahmed N U. Modal dynamics and stabilizer design for galloping transmission lines[J]. Electric power systems research,1987,12(3):175-182.
    [60]Gjelstrup H, Georgakis C T. A quasi-steady 3 degree-of-freedom model for the determination of the onset of bluff body galloping instability [J]. Journal of Fluids and Structures,2011,27:1021-1024.
    [61]陈晓明,邓洪洲,王肇民,等.大跨越输电线路舞动稳定性研究[J].工程力学,2004,21(1):56-60.
    [62]李欣业,张华彪,高仕赵,等.三自由度模型覆冰输电导线舞动的数值仿真分析[J].河北工业大学学报,2010,39(3):1-5.
    [63]吕乐丰,王跃方,刘迎曦.横向风荷载作用下轴向运动弦线自激振动和稳定性分析[J].工程力学,2008,25(2):40-45.
    [64]马文勇.覆冰导线驰振试验及理论研究[D].同济大学,2009.
    [65]郝淑英,周坤涛,刘君,等.考虑多种因素的覆冰输电线舞动的有限元分析[J].天津理工大学学报,2010,26(6):7-11.
    [66]严波,李文蕴,周松,等.覆冰四分裂导线舞动数值模拟研究[J].振动与冲击, 2010,29(9):102-107.
    [67]严波,胡景,周松,等.覆冰四分裂导线舞动数值模拟及参数分析[J].振动工程学报,2010,23(3):310-316.
    [68]谢增,刘吉轩,刘超群,等.覆冰输电线路分裂导线舞动的建模与数值模拟[J].西安交通大学学报,2012,46(7):69-74.
    [69]杨风利,杨靖波,付东杰,等.输电线路导线舞动荷载分析[J].中国电机工程学报,2011,31(16):102-107.
    [70]Clapp A L. Calculation of horizontal displacement of conductors under wind loading toward buildings and other supporting structures[C]//Rural Electric Power Conference,1993. Papers Presented at the 37th Annual Conference. IEEE,1993, Al:1-10.
    [71]Ozono S, Maeda J, Makino M. Characteristics of in-plane free vibration of transmission line systems[J]. Engineering Structures,1988,10(4):272-280.
    [72]Ozono S, Maeda J. In-plane dynamic interaction between a tower and conductors at lower frequencies[J]. Engineering Structures,1992,14(4):210-216.
    [73]赵桂峰,谢强,梁枢果,等.高压输电塔线体系抗风设计风洞试验研究[J].高电压技术,2009,35(5):1206-1213.
    [74]Battista R C, Rodrigues R S, Pfeil M S. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003,91(8):1051-1067.
    [75]Yasui H, Marukawa H, Momomura Y, et al. Analytical study on wind-induced vibration of power transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999,83(1):431-441.
    [76]邓洪洲,朱松晔,陈亦,等.大跨越输电塔线体系风振控制研究[J].建筑结构学报,2003,24(4):60-75.
    [77]郭勇,孙炳楠,叶尹.大跨越输电塔线体系风振响应的时域分析[J].土木工程学报,2006,39(12):12-17.
    [78]李黎,尹鹏.大跨越输电塔-线体系风振控制研究[J].工程力学,2008,25(A02):213-229.
    [79]梁峰,李黎,尹鹏.大跨越输电塔-线体系数值分析模型的研究[J].振动与冲击,2007,26(2):61-65.
    [80]Zhang Z, Li H, Li G, et al. The numerical analysis of transmission tower-Line system wind-Induced collapsed performance[J]. Mathematical Problems in Engineering,2013.
    [81]张琳琳,谢强,李杰.输电线路多塔耦联体系的风致动力响应分析[J].防灾减灾工程学报,2006,26(3):261-267.
    [82]赵桂峰.高压输电塔-线耦联体系风致非线性振动研究[D].同济大学,2009.
    [83]王昕.覆冰导线舞动风洞试验研究及输电塔线体系舞动模拟[D].浙江大学,2011.
    [84]孙珍茂.输电线路舞动分析及防舞技术研究[D].浙江大学,2010.
    [85]荣志娟,张陵.输电塔-覆冰导线耦合体系非线性动力响应分析[J].动力学与控制学报,2011,9(4):368-373.
    [86]曹化锦,李黎,姜维,等.输电塔-线体系舞动仿真及控制研究[J].振动与冲击,2011,30(12):245-249.
    [87]邓洪洲,司瑞娟,胡晓依,等.特高压输电塔气弹模型风洞试验研究[J].同济大学学报(自然科学版),2010,38(5):673-678.
    [88]邓洪洲,朱松晔,陈晓明,等.大跨越输电塔线体系气弹模型风洞试验[J].同济大学学报(自然科学版),2003,31(2):132-137.
    [89]赵桂峰,谢强,梁枢果,等.高压输电塔线体系风致非线性振动气弹模型风洞试验[J].同济大学学报(自然科学版),2009,37(9):1157-1164.
    [90]Loredo-Souza A M, Davenport A G. Wind tunnel aeroelastic studies on the behaviour of two parallel cables[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002,90(4-5):407-414.
    [91]谢强,严承涌,张勇.覆冰特高压导线风致动张力试验与分析[J].高电压技术,2010,36(8):1865-1870.
    [92]张勇,严承涌,谢强.覆冰特高压输电塔线耦联体系风致动力响应风洞试验[J].中国电机工程学报,2010(28):94-99.
    [93]杨风利,党会学,杨靖波,等.导线舞动时输电铁塔承载性能及破坏模式分析[J].中国电机工程学报,2013,33(22):135-141.
    [94]赵莉,严波,蔡萌琦,等.输电塔线体系中覆冰导线舞动数值模拟研究[J].振动与冲击,2013,32(18):113-120.
    [95]汪之松,李正良,肖正直,等.输电塔线耦合体系的风振疲劳时域分析[J].华南理工大学学报(自然科学版),2010,38(4):106-111.
    [96]Kazakevych M I, Vasylenko O H. Analytical solution for galloping oscillations[J]. Journal of engineering mechanics,1996,122(6):555-558.
    [97]Barrero-Gil A, Alonso G, Sanz-Andres A. Energy harvesting from transverse galloping[J]. Journal of Sound and Vibration,2010,329(14):2873-2883.
    [98]Barrero-Gil A, Sanz-Andr E S A, Roura M. Transverse galloping at low Reynolds numbers[J]. Journal of Fluids and Structures,2009,25(7):1236-1242.
    [99]Liu F, Zhang Q, Wang W. Analysis of hysteretic strongly nonlinearity for quad iced bundle conductors[J]. Chinese Physics Letters,2010,27(3):34703.
    [100]谭莹.四分裂覆冰输电导线舞动的动力学研究[D].天津大学,2010.
    [101]Jones K F. Coupled vertical and horizontal galloping closure[J]. Journal of Engineering Mechanics-ASCE,1993,118(1):92-107.
    [102]Alonso G, Meseguer J, Sanz-Andres A, et al. On the galloping instability of two-dimensional bodies having elliptical cross-sections[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(8):438-448.
    [103]Luongo A, Piccardo G. Linear instability mechanisms for coupled translational galloping[J]. Journal of sound and vibration,2005,288(4):1027-1047.
    [104]Macdonald J H, Larose G L. Two-degree-of-freedom inclined cable galloping-part 1: general formulation and solution for perfectly tuned system[J]. Journal of wind Engineering and industrial Aerodynamics,2008,96(3):291-307.
    [105]Macdonald J H, Larose G L. Two-degree-of-freedom inclined cable galloping-part 2: analysis and prevention for arbitrary frequency ratio[J]. Journal of wind Engineering and industrial Aerodynamics,2008,96(3):308-326.
    [106]Luongo A, Piccardo G. Non-linear galloping of sagged cables in 1:2 internal resnance[J]. Journal of Sound and Vibration,1998,214(5):915-940.
    [107]Luongo A, Piccardo G. A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance[J]. Journal of Vibration and Control,2008,14(1):135-157.
    [108]Luongo A, Zulli D, Piccardo G. A linear curved-beam model for the analysis of galloping in suspended cables[J]. Journal of Mechanical Material Structure,2007,2(4):67-95.
    [109]Nigol O, Buchan P G. Conductor galloping part I:Den Hartog mechanism[J]. Power Apparatus and Systems, IEEE Transactions on,1981(2):699-707.
    [110]Nigol O, Buchan P G. Conductor galloping-part Ⅱ:Torsional mechanism[J]. Power Apparatus and Systems, IEEE Transactions on,1981(2):708-720.
    [111]何锃,赵高煜.分裂导线扭转舞动分析的动力学建模[J].工程力学,2001,18(2):126-134.
    [112]Luongo A, Zulli D, Piccardo G. On the effect of twist angle on nonlinear galloping of suspended cables[J]. Computers & Structures,2009,87(15):1003-1014.
    [113]Robertson I, Li L, Sherwin S J, et al. A numerical study of rotational and transverse galloping rectangular bodies[J]. Journal of fluids and structures,2003,17(5):681-699.
    [114]Van Oudheusden B W. Aerodynamic stiffness and damping effects in the rotational galloping of a rectangular cross-section[J]. Journal of fluids and structures,2000,14(8): 1119-1144.
    [115]Van Oudheusden B W. Aerodynamic stiffness effects in rotational galloping at high wind speeds[J]. Journal of wind engineering and industrial aerodynamics,1996,64(1):31-46.
    [116]何锃,钱天虹.覆冰三分裂导线扭控舞动的分析计算[J].华中理工大学学报,1998,26(10):16-18.
    [117]Yu P, Shah A H, Popplewell N. Inertially coupled galloping of iced conductors[J]. Journal of applied mechanics,1992,59:140-145.
    [118]李欣业,张华彪,侯书军,等.覆冰输电导线舞动的仿真分析[J].振动工程学报,2010,23(1):76-85.
    [119]张琪昌,张翠英,何学军.索结构风雨振局部分岔[J].天津大学学报,2008,41(12):1405-1410.
    [120]Yu P, Desai Y M, Popplewell N, et al. Three-degree-of-freedom model for galloping. Part II: Solutions[J]. Journal of engineering mechanics,1993,119(12):2426-2448.
    [121]Yu P, Desai Y M, Shah A H, et al. Three-degree-of-freedom model for galloping. Part I: Formulation[J]. Journal of Engineering Mechanics,1993,119(12):2404-2425.
    [122]Luongo A, Zulli D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables[J]. Journal of sound and Vibration, 2008,315(3):375-393.
    [123]王跃方,赵光曦.三自由度偏心索风致振动稳定性分析[J].工程力学,2012,29(008):14-21.
    [124]蔡君艳.覆冰四分裂导线舞动的非线性特性研究[D].天津大学,2012.
    [125]蔡君艳,刘习军,张素侠.覆冰四分裂导线舞动近似解析解分析[J].工程力学,2013,30(5):305-310.
    [126]晏致涛,张海峰,李正良.基于增量谐波平衡法的覆冰输电线舞动分析[J].振动工程学报,2012,25(2):161-166.
    [127]Yan Z, Yan Z, Li Z,..et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity [J]. Journal of Sound and Vibration,2012,331(15):3599-3616.
    [128]Mason J. Variational, Incremental and energy methods in solid Mechanics and shell Theory[M]. Elsevier Amsterdam,1980.
    [129]Zhu Z H, Meguid S A. Elastodynamic analysis of low tension cables using a new curved beam element[J]. International journal of solids and structures,2006,43(6):1490-1504.
    [130]霍涛.考虑弹性边界条件曲梁模型的覆冰导线舞动多尺度法分析[D].重庆大学,2013.
    [131]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [132]刘海英,张琪昌,郝淑英.覆冰四分裂输电线舞动研究[J].振动工程学报, 2011,24(3):235-239.
    [133]Liu L, Wong Y S, Lee B H K. Application of the centre manifold theory in non-linear aeroelasticity[J]. Journal of Sound and Vibration,2000,234(4):641-659.
    [134]丁玉梅.非线性动力系统规范形理论及应用问题研究[D].天津大学,2009.
    [135]Bi Q, Yu P. Symbolic computation of normal forms for semi-simple cases[J]. Journal of Computational and Applied Mathematics,1997,102(2):195-220.
    [136]陈祎,张伟.六维非线性动力系统三阶规范形的计算[J].动力学与控制学报,2004,2(3):31-35.
    [137]曾广洪,刘华祥,吴庆初.N维中心流形和Hopf分支的计算机自动化简[J].江西科学,2006,24(3):222-223.
    [138]张琪昌,胡兰霞,何学军.高维Hopf分岔系统的最简规范形[J].天津大学学报,2005,38(10):878-881.
    [139]Bi Q, Yu P. Double hopf bifurcations and Chaos of a nonlinear vibration system[J]. Nonlinear Dynamics,1999,19(4):313-332.
    [140]Yu P. Simplest normal forms of Hopf and generalized Hopf bifurcations[J]. International Journal of Bifurcation and Chaos,1999,9(10):1917-1939.
    [141]Yu P, Yuan Y. The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue[J]. Continuous, Discrete Impulsive Systems(DCDIS). Series B Applications& Algorithms,2001,8:219-249.
    [142]Yuan Y, Yu P. Computation of simplest normal forms of differential equations associated with a double-zero eigenvalue[J]. International Journal of Bifurcation and Chaos, 2001,11(5):1307-1330.
    [143]Yu P. Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling[J]. Journal of Computational and Applied Mathematics, 2002,144(1):359-373.
    [144]Yu P, Leung A Y T. The simplest normal form of Hopf bifurcation[J]. Nonlinearity,2002,16 :277-300.
    [145]Leung A Y T, Zhang Q C. Normal form computation without central manifold reduction[J]. Journal of Sound and Vibration,2003,266(2):261-279.
    [146]张琪昌,何学军,胡兰霞.一类含参分叉系统最简规范形系数的计算[J].振动工程学报,2005,18(4):495-499.
    [147]Zhang W, Wang F, Zu J W. Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam[J]. Journal of Sound and Vibration,2004,278(4):949-974.
    [148]Wang J, Lilien J. Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations[J]. Power Delivery, IEEE Transactions on,1998,13(3):909-916.
    [149]樊社新,莫以为,朱江新.结冰分裂导线舞动振幅分析[J].振动工程学报,2012,25(3):268-273.
    [150]Zhang J H, Shi Y H, Liu G X, et al. Simulation of transmission line galloping using finite element method[C]. IEEE 2nd International Conference on Advances in Power System Control, Operation and Management,1993,644-648.
    [151]何锃,赵高煜.安装防振锤的分裂导线自由振动的有限元计算[J].工程力学,2003,20(1):101-105.
    [152]Desai Y M, Yu P, Popplewell N, et al. Finite element modelling of transmission line galloping[J]. Computers & Structures,1994,57(3):407-420.
    [153]Liu X, Yan B, Zhang H, et al. Nonlinear numerical simulation method for galloping of iced conductor[J]. Applied Mathematics and Mechanics,2009,30(4):489-501.
    [154]刘小会,严波,张宏雁,等.分裂导线舞动非线性有限元分析方法[J].振动与冲击,2010,29(6):129-133.
    [155]李黎,陈元坤,夏正春,等.覆冰导线舞动的非线性数值仿真研究[J].振动与冲击,2011,30(8):107-111.
    [156]王丽新,杨文兵,杨新华,等.输电线路舞动的有限元分析[J].华中科技大学学报(城市科学版),2004,21(1):76-80.
    [157]杨新华,王丽新,王乘,等.考虑多种影响因素的导线舞动三维有限元分析[J].动力学与控制学报,2004,2(4):84-89.
    [158]Yan Z, Savory E, Li Z, et al. Galloping of iced quad-conductors bundles based on curved beam theory[J]. Journal of Sound and Vibration,2014,333(6):1657-1670..
    [159]Braun A L, Awruch A M. Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation[J]. Journal of Sound and Vibration,2005,284(1):51-73.
    [160]Tokoro S, Komatsu H, Nakasu M, et al. A study on wake-galloping employing full aeroelastic twin cable model[J]. Journal of wind Engineering and industrial Aerodynamics, 2000,88(2):247-261.
    [161]徐中年.大气湍流对输电线舞动的影响[J].中国电力,1995,28(11):50-53.
    [162]Chadha J, Jaster W. Influence of turbulence on the galloping instability of iced conductors[J]. Power Apparatus and Systems, IEEE Transactions on,1975,94(5):1489-1499.
    [163]Diana G, Cheli F, Manenti A, et al. Oscillation of bundle conductors in overhead lines due to turbulent wind[J]. Power Delivery, IEEE Transactions on,1990,5(4):1910-1922.
    [164]贾付娜.湍流下覆冰输电线舞动分析[D].重庆大学,2013.
    [165]刘小会,严波,张宏雁,等.随机风场中覆冰四分裂导线舞动数值模拟[J].振动与冲击,2012,31(13):16-21.
    [166]严波,胡景,周松,等.随机风场中覆冰四分裂导线防舞研究[J].振动与冲击,2011,30(7):52-58.
    [167]刘锡良,周颖.风荷载的几种模拟方法[J].工业建筑,2005,5:81-84.
    [168]Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of engineering mechanics,1996,122(8):778-787.
    [169]李永乐,周述华,强士中.大跨度斜拉桥三维脉动风场模拟[J].土木工程学报,2003(10):60-65.
    [170]Carassale L, Solari G. Monte Carlo simulation of wind velocity fields on complex structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94(5): 323-339.
    [171]罗俊杰,韩大建.大跨度结构三维随机脉动风场的模拟方法[J].振动与冲击,2008,27(3):87-91.
    [172]Senthooran S, Lee D, Parameswaran S. A computational model to calculate the flow-induced pressure fluctuations on buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(13):1131-1145.
    [173]Smirnov A, Shi S, Celik I. Random flow generation technique for large eddy simulations and particle-dynamics modeling[J]. Transactions of the ASME, Journal of Fluids Engineering, 2001,123(2):359-371.
    [174]Huang M F, Lau I W H, Chan C M, et al. A hybrid RANS and kinematic simulation of wind load effects on full-scale tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(11):1126-1138.
    [175]熊铁华,梁枢果,吴海洋.某输电线路铁塔覆冰条件下的失效模式分析[J].计算力学学报,2011,28(3):468-472.
    [176]王振华,金晓华,弓国军.一次输电塔横担破坏事故有限元分析明.广东输电与变电技术,2010,12(4):48-50.
    [177]弓国军,金晓华,王振华.某输电塔横担变形断裂破坏探讨[J].广东电力,2012,25(6):51-53.
    [178]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [179]朱宽军,刘超群,任西春.架空输电线路舞动时导线动态张力分析[J].中国电力,2005,38(10):40-44.
    [180]张天光,孙东海,敖清诚,等.河南电网500kV姚邵线舞动事故分析与治理措施[J].电力建设,2009,30(3):24-27.
    [181]王柏生,秦建堂.结构试验与检测[M].杭州:浙江大学出版社,2007.
    [182]中华人民共和国国家标准.GB 50017-2003钢结构设计规范[S].北京:中国计划出版社,2003.
    [183]Wang Y, LU L, Huang L. Nonlinear vibration analysis for an airflow-excited translating string[J]. International Journal of Computational Methods,2012,9(04).
    [184]Baenziger M A, James W D, Wouters B, et al. Dynamic loads on transmission line structures due to galloping conductors[J]. Power Delivery, IEEE Transactions on,1994,9(l):40-49.
    [185]刘操兰,朱宽军,刘彬,等.覆冰导线舞动的动态张力研究[J].振动与冲击,2012,31(5):82-86.
    [186]中华人民共和国电力行业标准.DL/T 5440-2009重覆冰架空输电线路设计技术规程[S].北京:中华人民共和国国家能源局,2009.
    [187]中华人民共和国国家标准.GB 50545-2010110kV-750kV架空输电线路设计规范[S].中华人民共和国计划出版社,2010.
    [188]Desai Y M, Shah Y A, Popplewell N. Perturbation-based finite element analyses of transmission line galloping[J]. Journal of sound and vibration,1996,191(4):469-489.
    [189]Zhang Q, Popplewell N, Shah A H. Galloping of bundle conductor[J]. Journal of sound and vibration,2000,234(1):115-134.
    [190]马玉全.改进CR列式法及在几何非线性分析中的应用[J].科学技术与工程,2010,30:7488-7490.
    [191]Li Y, Liao H, Qiang S. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridgesfJ]. Computers& Structures,2004,82(20):1591-1598.
    [192]杨伦,黄铭枫,楼文娟.高层建筑周边三维瞬态风场的混合数值模拟[J].浙江大学学报(工学版),2013,47(5):824-830.
    [193]Solari G, Piccardo G. Probabilistic 3-D turbulence modeling for gust buffeting of structures[J]. Probabilistic Engineering Mechanics,2001,16(l):73-86.