基于数量适应的数量认知研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数量表征具有内隐性,大多数行为研究(如采用数量判断任务)只能间接探讨其性质。以往许多研究考察了不同视觉特征对数量判断的影响,但得出的结论不一。我们认为,成人在进行数量判断时会参考非数量线索或采用一些特定的策略,数量判断不一定能准确反映数量感知情况。因此,需要采用更有效的范式研究数量感知。
     数量适应是指观察者在知觉上适应刺激数量的过程,可以通过考察适应后其数量感知的变化加以揭示。目前,对这一过程的争论在于:它是对数量的单独适应呢,还是对非数量表面信息适应的副产品?如果确实是对数量特征的适应,那么它就可以作为考察数量感知的一种有效手段。
     本研究探讨用数量适应范式研究数量认知的必要性与合理性,并应用这一范式对非符号数量信息的加工机制进行分析,考察客体表征与数量加工的关系。具体地说,首先,本研究根据信号检测论原理,比较多种视觉因素影响数量判断的作用方式,探讨数量判断是否能稳定地反应数量感知的问题,提出客体表征可能是影响数量感知的重要因素。其次,本研究考察表面信息、数量感知与数量适应的关系,分析数量适应的加工基础,探讨客体表征对数量感知和适应的影响,分析数量的加工水平。第三,本研究考察意识条件对数量适应的影响,以进一步分析客体表征对数量加工的作用。
     本研究包括三个部分共七项实验。第一部分(实验1和实验2)考察数量判断任务是否能稳定地反应数量感知情况,提出客体表征对于数量感知具有重要的作用。第二部分(实验3和实验4)考察数量适应的性质,探讨表面信息、数量感知与数量适应之间的关系,提出数量适应是基于数量感知而相对独立于表面信息的效应,客体表征对数量感知和适应都会产生显著影响;第三部分(实验5、实验6和实验7)考察意识水平对数量表征和适应的影响,比较有意识和无意识条件下数量适应的性质,提出意识水平对数量表征和适应具有显著影响。此外,本文通过三项研究,层层递进地考察了客体表征与数量认知之间的关系,最终提出客体表征对数量加工具有重要作用。
     本研究主要获得如下结果:
     (1)数量判断任务易受策略干扰,不一定能准确的反映数量感知。不同非数量特征对数量判断影响机制不同,大小和形状等特征仅影响数量判断的反应标准,而刺激聚集或分组(组块)能影响数量判断的辨别力,并直接影响数量感知。
     (2)刺激点组块后,被试难以直接判断总刺激点的数量,却可以近似表征组块数,这提示认知系统先表征客体,再以客体为计数单位进行数量表征和适应。
     (3)当非数量表面信息的改变不影响数量感知时,数量适应量也保持不变;当表面信息的改变显著影响数量感知时,数量适应也受到影响,并将按照改变后的数量感知水平重新进行适应。因此,数量适应是基于数量感知的适应。
     (4)对适应刺激的知觉处于无意识状态时,其数量特征仍能被加工和适应。在同样的时间内,有意识的数量适应量显著大于无意识适应。
     (5)有意识与无意识条件下的数量适应具有不同的加工机制。在有意识条件下,适应发生在双眼水平,而在无意识条件下,适应发生在单眼水平。在有意识条件下,适应刺激点组块后其适应量显著下降,而在无意识条件下,适应刺激是否组块不影响适应量。有意识条件下的数量加工可以发生在客体表征之后的高级水平,此时组块通过改变客体表征的方式对数量加工产生影响。
     总之,本研究表明,数量判断任务不一定能稳定地反映数量感知情况,而数量适应范式却可以作为研究数量认知的有效途径。客体表征与数量加工有密切关系,在有意识的条件下,数量加工可以发生在客体表征之后的认知阶段。
Most behavioral studies of numerosity cognition, e. g, numerosity deciding paradigm, have indirectly explored various features of numeral processing because of the implicit property of numerosity representation. Previous studies brought about some inconsistent results in the effects of non-numeral cues on numerosity judgements. Numerosity judging tasks may not reflect real status of numerosity perception, given the non-numeral cues or strategies that probably used when adults were making decisions. So, we need to analyze the results of numerosity judging tasks deeply and adopt more effective paradigm to study numerosity cognition.
     Numerosity adaptation aftereffect refers to the adaptation to the numeral property of stimuli, with an aftereffect that can be revealed by changes of perceived numerosity in following numerosity judging tasks. A current debate of the numerosity adaptation effect focused on whether it was really driven from processing of stimuli's numerosity, or it was actually a result of processing of surface information. If it is really an aftereffect based on numerosity processing, then the numerosity adaptation paradigm could be an effective way to study numerosity cognition.
     The present study consisted of three parts. The first part (Experiment1and2) decided whether numeral judging tasks could steadily reflect numerosity perception by examing effects of different visual cues on judging task performances and analyzing data based on signal detecting theory, assuming that object representation had significantly influence on numerosity perception. The second part (Experiment3and4) explored the interrelationship among surface information, numerosity perception and adaptation, proposing that adaptation of numerosity was based on perceived numerosity, and surface information could not affect the numerosity adaptation effect unless it affected the perception of numerosity. In the third part (Experiment5,6and7), we investigated the properties of numerosity adaptation aftereffects with and without consciousness using continuous flash suppression paradigm, suggesting that different mechanisms existed in processing of numerosity under different consciousness conditions. Meanwhile, we discussed the relationship between object representation and numerosity cognition through our paper, disclosing the crucial role of object representation in numerosity cognition gradually during these three studies.
     The main findings of this study are as follows:
     (1) Numerosity deciding tasks did not accurately reflect real status of numerosity perception, since they were apt to be affected by strategies. Different non-numerical visual features had different mechanisms of affecting numeral deciding tasks. Some features only affected judging strategies, such as dots' size or shape, whereas chunking (i.e, dots' clustering or perceptual grouping) could affect numerosity perception directly by changing the ability of numerosity discrimination.
     (2) Subjects were not able to decide total number of dots directly when dots were chunking. Whereas they could roughly response according to the number of chunks, which suggested that cognition system process numerosity on the basis of object representation.
     (3) Numerosity adaptation aftereffects remained constant as long as varied texture characteristics had no effects on the perception of numerosity. Otherwise, it would be apparently affected when the perceived numerosity was interfered with the changing of texture. Therefore, numerosity adaptation aftereffects were a kind of adaptation based on perceived numerosity, rather than co-products driven from processing of surrogate surface features.
     (4) Even when stimuli were unconsciously perceived, the numerosity properties of them can be adapted to. When participants adapted for same period of time, the aftereffect of numerosity adaptation with consciousness was significantly greater than that without consciousness.
     (5) Different mechanisms of cognition progressing existed in numerosity adaptation across different consciousness conditions. In other words, numerosity adaptation aftereffects were shown to be primarily binocular and affected by chunking with consciousness, while they were seemed to be primarily monocular and not affected by chunking without consciousness. With consciousness, numerosity properties involved high-level cognition processes and chunking could affect the processing procedure of numerosity by changing object representation.
     In summary, numerosity deciding tasks were not ensured to reflect real status of numerosity perception, while numerosity adaptation paradigm could be an effective way to study numerosity cognition. There was a close connection between object representation and numerosity cognition. With consciousness, numerosity cognition could be built on the cognitive stage of object representation.
引文
Allik, J., Tuulmets, T.,& Vos, P. G. (1991). Size invariance in visual number discrimination. Psychological Research,53(4),290-295.
    Allik, J.,& Tuulmets, T. (1991). Occupancy model of perceived numerosity. Perception & Psychophysics,49,303-314.
    Amihai, I., Deouell, L.,& Bentin, S. (2011). Conscious awareness is necessary for processing race and gender information from faces. Consciousness and Cognition, 20(2),269-279.
    Barth, H., Kanwisher, N.,& Spelke, E. (2003). The construction of large number representations in adults. Cognition,86,201-221.
    Blake, R., Tadin, D., Sobel, K. V., Raissian, T. A.,& Chong, S. C. (2006). Strength of early visual adaptation depends on visual awareness. Proceedings of the National Academy of Sciences, USA,103,4783-4788.
    Brannon, E. M.,& Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys, Science,23(282),746-749.
    Burr, D. C., Anobile, G.,& Turi, M. (2011). Adaptation affects both high and low (subitized) numbers under conditions of high attentional load. Seeing & Perceiving,24(2),141-150(10).
    Burr, D. C.,& Morrone, M. C. (2011). Spatiotopic coding and remapping in humans. Philosophical Transactions of the Royal Society B,366,504-515.
    Burr, D. C.,& Ross, J. (2008a). A visual sense of number. Current biology,18, 425-428.
    Burr, D. C.,& Ross, J. (2008b). Response:visual number. Current biology,18, 857-858.
    Burr, D. C., Turi, M.,& Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision,10(6),20,1-10.
    Cantlon, J. F.,& Brannon, E. M. (2005). Semantic congruity affects numerical judgments similarly in monkeys and humans, Proceedings of the National Academy of Sciences,102(45),16507-16511.
    Carey, S. (2002). Cognitive foundations of arithmetic:evolution and ontogenisis. Mind and Language,16,37-55.
    Chen, L. (2005). The topological approach to perceptual organization. Visual Cognition,12,553-637.
    Dehaene, S. (2002). Precis of The Number Sense. Mind & Language,16(1),16-36.
    Dehaene, S.,& Changeux, J.-P. (1993). Development of elementary numerical abilities:a neural model. Journal of Cognitive Neuroscience,5,390-407.
    Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J.,& Sergent, C. (2006). Conscious, preconscious, and subliminal processing:a testable taxonomy. Trends in Cognitive Sciences,10(5),204-211.
    Dehaene, S., Izard, V., Spelke, E.,& Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5580),1217-20.
    Dehaene, S., Spelke, E., Pinel, P., Stanescu, R.,& Tsivkin, S. (1999). Sources of mathematical thinking:behavioral and brain-imaging evidence. Science,284, 970-974.
    de Hevia, M. D. (2011). Sensitivity to number:Reply to Gebuis and Gevers. Cognition,121,253-355.
    Durgin, F. H. (2001). Texture contrast aftereffects are monocular; texture density aftereffects are binocular. Vision Research,41,2619-2630.
    Durgin, F. H. (2008). Text density adaptation and visual number revisited. Current biology,18,855-856.
    Franconeri, S. L., Bemis, D. K.,& Alvarez, G. A. (2009). Number estimation relies on a set segmented objects. Cognition,113,1-13.
    Gallistel, C. R.,& Gelman, R. (2000). Non-verbal numerical cognition:From reals to integers. Trends in Cognitive Sciences,4,59-65.
    Gazzaniga, M. S., Ivry, R. B.,& Mangun, G. R. (2008). Cognitive Neuroscience:The Biology of the Mind (3rd ed). New York:Norton.
    Ginsburg, N. (1978). Perceived numerosity, item arrangement, and expectancy. American Journal of Psychology,91,267-273.
    Ginsburg, N. (1988). Perceived numerosity as a function of item size. Perceived & Motor Skills,67,656-658.
    Ginsburg, N.,& Goldstein, S. R. (1987). Measurement of visual cluster. American Journal of Psychology,100,193-203.
    Grill-Spector, K., Henson, R.,& Martin, A. (2006). Repetition and the brain:neural models of stimulus-specific effects. Trends in Cognitive Sciences,10,14-23.
    Halberda, J., Sires, S. F.,& Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychology Science,17,572-576.
    Harris, J. J., Schwarzkopf, D. S., Song, C., Bahrami, B.,& Rees, G. (2011). Contextual illusions reveal the limit of unconscious visual processing. Psychological Science,22(3),399-405.
    He, L., Zhang, J., Zhou, T.,& Chen, L. (2009). Connectedness affects dot numerosity judgment:Implications for configural processing. Psychonomic Bulletin & Review, 16,509-517.
    Kouider, S.,& Dehaene, S. (2007). Levels of processing during non-conscious perception:A critical review of visual masking. Philosophical Transactions of the Royal Society B:Biological Sciences,362(1481),857-875.
    Kramer, P., Bono, M.-D.,& Zorzi, M., (2011). Numerosity estimation in visual stimuli in the absence of luminance-based cues. PLoS ONE 6(2), e17378.
    Lin Z. C.,&, He, S. (2009). Seeing the invisible:The scope and limits of unconscious processing in binocular rivalry. Progress in Neurobiology,87(4),195-211.
    Loffler, G. (2008). Perception of contours and shapes:Low and intermediate stage mechanisms. Vision Research,48,2106-2127.
    Moradi, F., Koch, C.,& Shimojo, S. (2005). Face adaptation depends on seeing the face. Neuron,45,169-175.
    Nieder, A. (2005). Counting on neurons:The neurobiology of numerical competence. Nature Reviews, Neuroscience,6,177-190.
    Nieder, A.,& Dehaene, S. (2009). Representation of number in the brain. The Annual Review of Neuroscience,32,185-208.
    Orban, G., A. (2008) Higher order visual processing in macaque extrastiate cortex. Physiological Reviews,88,59-89.
    Piazza, M., Izard, V., Pinel, P., Bihan, D. L.,& Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron,44,547-555.
    Roitman, J. D. Brannon, E. M.,& Platt, M. L. (2007). Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biology,5, e208.
    Ross, J. (2003). Visual discrimination of number without counting. Perception,32, 867-870.
    Ross, J.,& Burr, D. C. (2010). Vision sense number directly. Journal of Vision,10(2), 1-8.
    Sang, C. C.,& Karla, K. E. (2010). Distributed versus focused attention (count vs estimate). WIREs Cognitive Science,10,1002.
    Sophian, C. (2007). Measuring spatial factors in comparative judgments about large numerosities. In D. Schmorrow & L. Reeves (Eds.), Foundations of augmented cognition:Third International Conference. Secaucus (pp.157-165). NJ:Springer.
    Sophian, C. (2009). Numerical Knowledge in Early Childhood. In Tremblay RE, Barr RG, Peters RDeV, Boivin M (Eds), Centre of Excellence for early childhood development:Encylopedia on Early Childhood Development. Montreal, Quebec (pp.1-7).
    Sophian, C.,& Chu, Y. (2008). How do people apprehend large numerosities? Cognition,107,460-478.
    Suzuki, S. (2005). High-level pattern coding revearled by brief shape aftereffects. In C. Clifford & G. Rhodes (Eds.), Advances in visual cognition:Vol.2. Fitting the mind to the world:Adaptation and aftereffects in high-level vision (pp.135-172). Oxford, England:Oxford University Press.
    Sweeny, T. D., Grabowecky, M., & Suzuki, S. (2011). Awareness becomes necessary between adaptive pattern coding of open and closed curvatures. Psychological Science,22(7),943-950.
    Thompson, P.,& Burr, D. (2009). Visual aftereffects. Current Biology,19, Rl 1-R14.
    Xu F.,& Spelke E. S. (2000). Large number discrimination in 6-month-old infants. Cognition,74, B1-B11.
    Verguts, T.,& Fias, W. (2004). Representation of number in animals and humans:a neural model. Journal of Cognitive Neuroscience,16,1493-504.
    Yang, E., Hong, S.-W.,& Blake, R. (2010). Adaptation aftereffects to facial expressions suppressed from visual awareness. Journal of Vision,10(12),24, 1-13.
    刘炜,张智君,赵亚军.(2012).基于数量感知的数量适应.心理学报,44(9),1-13.
    郭秀艳.(2004).实验心理学(pp.276-301).北京:人民教育出版社,2004.
    水仁德,徐飞,沈模卫.(2004).婴儿数量表征的客体档案和类比模型.心理科学进展,12(5),784-790.
    王寰,张智君.(2011).坡度的高估是系统性的还是测量造成的——感觉方式和报告方式对坡度知觉的影响.应用心理学,17(3):212-221.
    杨红,赵晖,赵倩,陆浩.(2011).非符号数量加工的脑激活特异性.第十四届全国心理学学术大会,中国,西安.
    张秀玲,董波,江云鹏,张明.(2012).无意识信息加工中的“完型”——无意识捆绑假说的新证据.心理学报,1563-1570.
    张真,苏彦捷.(2007).人类数能力的演化基础——数能力比较研究的启示.心理科学进展,15(1),57-63.