纳米莲纤维/海藻酸盐多孔材料制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然高分子材料可用于组织工程等医学领域,研究其自身因素对降解过程的影响和机理,设计降解可控的生物材料是亟待解决的问题。本文主要研究海藻酸钠、纳米莲纤维为基材的多孔材料制备及表征,重点对其降解性能进行深入探讨。
     (1)蜂窝状海藻酸盐多孔材料的制备及表征。通过理化性质表征发现海藻酸钠易于加工成型,Mw=3.0×105海藻酸盐多孔材料成膜性能最佳,应根据需要选择合适的分子量以改善其性能。采用冷冻干燥技术、-10℃预冻可构建出蜂窝状多孔材料(孔隙率为92.06%),改变预冻温度可以调控孔隙结构。随着海藻酸钠用量增多,多孔材料的孔隙率降低,孔径减小,吸水率先上升而后下降;而拉伸强度、断裂伸长率均增加。以上研究为构建降解可控的海藻酸盐多孔材料奠定了基础。
     (2)氧化海藻酸钠制备及海藻酸盐多孔材料的降解性能调控。对海藻酸钠进行醛基化改性并表征其化学组成、氧化度及降解性能;再分别用氯化钙、羧甲基壳聚糖进行交联,研究其降解性能。氯化钙交联后海藻酸盐多孔材料降解速率与氧化度的增加成正比,最高达61.71%。海藻酸盐多孔材料降解液pH值下降,亦与氧化度成正比。羧甲基壳聚糖交联氧化海藻酸钠制备的多孔材料降解速率提升,14天降解82.12%-100.00%。随着羧甲基壳聚糖用量提高,降解液pH值趋于上升,说明调整组分摩尔比可以控制材料的降解速率及pH值。
     (3)纳米莲纤维/海藻酸盐多孔材料的制备及降解性能调控。采用TEMPO/NaClO/NaBr体系对预处理过的莲纤维进行羧基改性,所得纳米莲纤维直径为15nm,其羧基含量随着氧化时间的增加而升高。对照组纤维素粉降解缓慢;纳米莲纤维降解速率与羧基含量成正相关,而降解液pH值随羧基含量上升呈下降趋势。氯化钙交联的纳米莲纤维/海藻酸盐多孔材料降解速率较小(40.20%),而羧甲基壳聚糖交联的纳米莲纤维/海藻酸盐多孔材料拥有优异的降解性能(59.16%),以及高孔隙率(87.10%)、高吸水率(1813.33%)、较好的拉伸性能(0.36MPa/7.73%),为构建皮肤组织工程支架提供研究基础。
Natural polymer materials could be used in the field of tissue engineering and other medicine domain. To study the effect of its own factors on the degradation process and mechanism and design degradation of controllable of biological materials were the key issue to be solved. In this paper, we studied preparation and characterization of porous materials by sodium alginate and lotus nanofibers, and their degradation performance were discussed.
     (1) Preparation and characterization of spongy alginate porous materials. According to physicochemical characterization, sodium alginate was easy to processing molding. Alginate (Mw=3.0×105) was conducive to forming membranes. So, suitable molecular weight should be selected in order to improve their performance. With freeze-drying technology and pre-freezing at-10℃, we have builded the honeycomb materials (Porousity=92.06%). Changing the pre-freezing temperature can regulate pore structure to some extent. With the increased dosage of sodium alginate, the porosity and the pore size of the materials were reduced, while tensile strength and elongation at break increased. Water absorption performance of the materials was good. The above studies lay a foundation for construction of controllable degradation alginate porous materials.
     (2) The preparation of oxidized sodium alginate and controllable degradation study of alginate porous materials. Sodium alginate was aldehyde-modified and characterization of its chemical structure, the degree of oxidation and biodegradation. Then, oxidized sodium alginate was crosslinked respectively with calcium chloride and carboxymethyl chitosan, with their degradation performance studied.
     It was found that the non-oxidized alginate porous materials degrade slowly. The degradation rates of oxidized alginate were faster, which was up to61.71%. Thus, degradation rates of calcium chloride crosslinked porous materials increased while pH values of liquid decreased, which was proportional to the degree of oxidation. The oxidized alginate materials crosslinked with carboxymethyl chitosan degraded faster than non-oxidized one, with degradation rates decreased82.12%-100.00%during14days. Increasing dosage of carboxymethyl chitosan, the pH values tended to rise, which indicated that adjusting component mole ratio may control the material degradation rates and pH values.
     (3) Preparation of lotus nanofibers/alginate porous materials and controlled degradation studies. First, lotus fibers were carboxyl-modified with TEMPO/NaClO/NaBr system and got lotus nanofibers whose diameter reached15run. The carboxyl content of lotus nanofibers increased with the increase of oxidation time. Unmodified cellulose degradation rates were very slow. But degradation rates of lotus nanofibers were positively correlated with the carboxyl content and pH values were opposite.
     The degradation rates of the lotus nanofibers/alginate materials crosslinked with calcium chloride were slow (40.20%). In contrast, the materials crosslinked with carboxymethyl chitosan owned better performance such as porosity (87.10%), water absorption ration (1813.33%), mechanical properties (0.36MPa/7.73%) and in vitro degradation (59.16%). So, the materials crosslinked with carboxymethyl chitosan are expected to be used in medical fields such as skin tissue engineering.
引文
1 Yannas I V. Studies on the biological activity of the dermal regeneration template[J]. Wound Repair and Regeneration, 1998,6(6):518-523.
    2张志雄,奚廷斐.冷静反思组织工程应该如何发展[J].中国修复重建外科杂志,2009,23(2):131-135.
    3曹谊林,崔磊,商庆新,等.组织工程的研究现状与应用展望[J].中国医疗器械信息,2002,8(4):11-14.
    4左丹英,王琰,陶咏真.皮肤组织工程支架材料与制备方法的研究进展[J].武汉科技学院学报,2010,23(2):22-26.
    5 Bello Y M, Falabella A F, Eaglstein W H. Tissue-engineered skin:Current status in wound healing [J]. American Journal of Clinical Dermatology, 2001,2(5):305-313.
    6 Guo B, Ma P X. Synthetic biodegradable functional polymers for tissue engineering:a brief review[J]. Science China Chemistry, 2014,57 (4):490-500.
    7 Rennekampff H 0, Hansbrough J F, Kiessig V, et al. Wound closure with human keratinocytes cultured on a polyurethane dressing overlaid on a cultured human dermal replacement[J]. Surgery, 1996, 120(1):16-22.
    8 Besner G E, Klamar J E. Integra artificial skin as a useful adjunct in the treatment of purpura fulminans[J]. Journal of Burn Care and Rehabilitation,1998,19(4):324-329.
    9赵广建,赵耀.人工皮肤替代物的材料种类及其特征[J].中国组织工程研究,2010,14(29):5467-5470.
    10王志勇,田恒进,靖树林.脱细胞异体真皮基质治疗烧伤后瘢痕挛缩畸形11例[J].苏州大学学报(医学版),2003,23(1):125.
    11 Chen R N, Ho H 0, Tsai Y T, et al. Process development of an acellular dermal matrix (ADM) for biomedical applications[J]. Biomaterials, 2004,25(13):2679-2686.
    12 Eaglstein W H, Falanga V. Tissue engineering and the development of Apligraf°, a human skin equivalent [J]. Clinical Therapeutics, 1997,19(5):894-905.
    13刘郁倩,刘婷,但卫华,等.胶原基复合膜支架材料的研究进展[J].西部皮革,2013,35(22):17-21.
    14黄汉萍,牟善松,屠美,等.活性人工皮肤的骨架——一种新型胶原复合膜的制备及性能研究[J].中国医学物理学杂志,2003,20(4):293,296.
    15杨运,周燕,华平,等.添加剂对活性人工皮肤胶原海绵支架材料的影响[J].功能高分子学报,2004,17(3):396-400.
    16高长有,袁骏.胶原基人工真皮替代物的材料与结构设计[J].生物医学工程学杂志,2002,19(1):127-131.
    17琚海燕,王坤余,苏德强,等.Ⅰ型胶原基生物材料的应用研究[J].西部皮革,2007,29(10):30-34.
    18 Black A F, Berthod F, L'heureux N, et al. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent[J]. The FASEB journal,1998, 12(13):1331.
    19 Mi F L, Shyu S S, Wu Y B, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing[J]. Biomaterials, 2001,22(2):165-173.
    20邹强,佟小强,王健,等.海藻酸钠微球肾动脉栓塞的动物实验研究[J].中国医学影像技术,2008,24(4):479-482.
    21 Langer R, Vacanti J P. Tissue engineering [J]. Science, 1993,260:920-926.
    22位晓娟,奚廷斐,顾其胜,等.医用海藻酸基生物材料的研究进展[J].中国修复重建外科杂志,2013, 27(8):1015-1020.
    23卢晓黎,雷鸣,陈正纲,等.常用低浓度食品胶溶液粘度的影响因素研究(4)[J].四川大学学报(工程科学版),2001,33(3):79-81.
    24 Braccini I, P6rez S. Molecular basis of Ca2+-induced gelation in alginates and pectins:the egg-box model revisited[J]. Biomacromolecules, 2001,2(4):1089-1096.
    25郭全义,卢世璧.藻酸钙的特性及在软骨组织工程的应用[J].中国矫形外科杂志,2006,14(3):216-218.
    26 Jeon 0, Alt D, Ahmed S, et al. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels[J]. Biomaterials, 2012,33(13):3503-3514.
    27 Petrulyte S. Advanced textile materials and biopolymers in wound management[J]. Danish Medical Bulletin,2008,55(1):72-77.
    28 Bowler P G, Jones S A, Davies B J, et al. Infection control properties of some wound dressings [J]. J Wound Care, 1999,8(10):499-502.
    29 Young M J. The use of alginates in the management of exudating, infected wounds:case studies[J]. Dermatology Nursing, 1993,5(5):359-63,356.
    30 Tyler R, Tobias R S, Ayliffe G A J, et al. An in vitro study of the antiviral properties of an alginate impression material impregnated with disinfectant[J]. Journal of Dentistry, 1989, 17 (3):137-139.
    31 Wang H, Ooi E V, Jr A P 0. Antiviral activities of extracts from Hong Kong seaweeds [J]. Journal of Zhejiang University SCIENCE B, 2008,9(12):969-976.
    32 Wiegand C, Heinze T, Hipler U C. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate[J]. Wound Repair and Regeneration, 2009,17(4):511-521.
    33 Attwood A. Calcium alginate dressing accelerates split skin graft donor site healing[J]. British Journal of Plastic Surgery, 1989,42(4):373-379.
    34 O'Donoghue J, O'Sullivan S, Beausang E, et al. Calcium alginate dressings promote healing of split skin graft donor sites[J]. Acta Chirurgiae Plasticae, 1997,39:53-55.
    35 Sayag J, Meaume S, Bohbot S. Healing properties of calcium alginate dressings[J]. Journal of Wound Care,1996,5(8):357-362.
    36顾华,李坤杰,刘玲,等.毛囊混合细胞在海藻酸钠支架上诱导毛囊重建[J].中华皮肤科杂志,2012,45(009):634-637.
    37 Machida-Sano I, Matsuda Y, Namiki H. In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films [J]. Biomedical Materials, 2009,4(2):1-8.
    38 Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications:A review[J]. Biomacromolecules, 2011,12(5):1387-1408.
    39 Wang W, Wang X, Feng Q, et al. Sodium alginate as a scaffold material for hepatic tissue engineering[J]. Journal of Bioactive and Compatible Polymers, 2003,18(4):249-257.
    40 Stokols S, Tuszynski M H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury[J]. Biomaterials, 2006,27(3):443-451.
    41 Guo L, Wang W, Chen Z, et al. Promotion of microvasculature formation in alginate composite hydrogels by an immobilized peptide GYIGSRG[J]. Science China Chemistry, 2012,55(9):1781-1787.
    42 Wang C C, Yang K C, Lin K H, et al. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology[J]. Biomaterials, 2011, 32(29):7118-7126.
    43 Luginbuehl V, Wenk E, Koch A, et al. Insulin-like growth factor I—releasing alginate-tricalciumphosphate composites for bone regeneration[J]. Pharmaceutical Research, 2005, 22(6):940-950.
    44汪大彬,文益民,蓝旭.壳聚糖-藻酸盐多通道支架材料细胞相容性研究[J].中国矫形外科杂志,2010,18(10):836-839.
    45 Wang A, Ao Q, Cao W, et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2006,79(1):36-46.
    46 Augst A D, Kong H J, Mooney D J. Alginate hydrogels as biomaterials[J]. Macromolecular Bioscience, 2006,6(8):623-633.
    47 Sultzbaugh K, Speaker T. A method to attach lectins to the surface of spermine alginate microcapsules based on the avidin biotin interaction[J]. Journal of Microencapsulation, 1996, 13(4):363-376.
    48 Marler J J, Guha A, Rowley J, et al. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts[J]. Plastic and Reconstructive Surgery, 2000,105(6):2049-2058.
    49 Rowley J A, Madlambayan G, Mooney D J. Alginate hydrogels as synthetic extracellular matrix materials[J]. Biomaterials, 1999,20(1):45-53.
    50 Griffith L G, Naughton G. Tissue engineering—current challenges and expanding opportunities [J]. Science,2002, 295(5557):1009-1014.
    51 Jeong S I, Krebs M D, Bonino C A, et al. Electrospun Alginate Nanofibers with Controlled Cell Adhesion for Tissue Engineering [J]. Macromolecular Bioscience, 2010,10(8):934-943.
    52 Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, et al. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts[J]. Carbohydrate Polymers, 2011,85(3):548-553.
    53 Li Z, Ramay H R, Hauch K D, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering [J]. Biomaterials, 2005,26(18):3919-3928.
    54 Sun G, Shen Y I, Kusuma S, et al. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors[J]. Biomaterials, 2011,32(1):95-106.
    55 Choi Y S, Lee S B, Hong S R, et al. Studies on gelatin-based sponges. Part III:a comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat[J]. Journal of Materials Science Materials in Medicine,2001,12(1):67-73.
    56 Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation[J]. Biomaterials, 1997,18(8):583-590.
    57 Kim G H, Ahn S, Kim Y Y, et al. Coaxial structured collagen-alginate scaffolds:fabrication, physical properties, and biomedical application for skin tissue regeneration[J]. Journal of Materials Chemistry, 2011,21:6165-6172.
    58 Baldwin A D, Kiick K L. Polysaccharide-modified synthetic polymeric biomaterials [J]. Biopolymers, 2009,94(1):128-140.
    59 Nguyen T P, Lee B T. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration[J]. Journal of Biomaterials Applications, 2012,27(3):311-321.
    60 Bouhadir K H, Lee K Y, Alsberg E, et al. Degradation of partially oxidized alginate and its potential application for tissue engineering[J]. Biotechnology Progress, 2001,17(5):945-950.
    61 Moshaverinia A, Chen C, Akiyama K, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells:an in vitro study [J]. Journal of Materials Science:Materials in Medicine, 2012:1-11.
    62 Kim W S, Mooney D J, Arany P R, et al. Adipose tissue engineering using injectable, oxidized alginate hydrogels[J]. Tissue Engineering Part A, 2012,18(7-8):737-743.
    63 Wang L, Shansky J, Borselli C, et al. Design and fabrication of a biodegradable, covalently crosslinked shape-memory alginate scaffold for cell and growth factor delivery[J]. Tissue Engineering Part A, 2012,18(19-20):2000-2007.
    64 Li X, Chen S, Zhang B, et al. In-situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application[J]. International Journal of Pharmaceutics, 2012,437(1-2):110-119.
    65 Li X, Xu A, Xie H, et al. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering [J]. Carbohydrate Polymers, 2010,79 (3):660-664.
    66 Yang C, Frei H, Rossi F M, et al. The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds[J]. Journal of Tissue engineering and regenerative medicine, 2009,3(8):601-614.
    67 Saf i S, Morshed M, Hosseini Ravandi S, et al. Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly (vinyl alcohol) and sodium alginate/poly (ethylene oxide)[J]. Journal of Applied Polymer Science, 2007,104(5):3245-3255.
    68 Khan F, Tare R S, Oreffo R, et al. Versatile biocompatible polymer hydrogels:scaffolds for cell growth[J]. Angewandte Chemie, 2009,121(5):996-1000.
    69 Lee K Y, Mooney D J. Hydrogels for tissue engineering [J]. Chemical Reviews,2001, 101(7):1869-1880.
    70 Mulller F A, Muller L, Hofmann I, et al. Cellulose-based scaffold materials for cartilage tissue engineer ing [J]. Biomaterials,2006,27(21):3955-3963.
    71 Verma V, Verma P, Ray P, et al.2, 3-Dihydrazone cellulose:Prospective material for tissue engineering scaffolds[J]. Materials Science and Engineering:C, 2008,28(8):1441-1447.
    72 Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1):71-85.
    73 Azizi Samir M A S, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules,2005, 6(2):612-626.
    74 李勍,陈文帅,于海鹏,等.纤维素纳米纤维增强聚合物复合材料研究进展[J].林业科学,2013,49(8):126-131.
    75潘颖.莲纤维的结构与性能研究[D].上海:东华大学,2011:7-9.
    76 Rebouillat S, Pla F. State of the art manufacturing and engineering of nanocellulose:A review of available data and industrial applications[J]. Journal of Biomaterials and Nanobiotechnology, 2013,4:165-188.
    77 Dong X M, Revol J F, Gray D G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose[J]. Cellulose, 1998,5(1):19-32.
    78 Leitner J, Hinterstoisser B, Wastyn M, et al. Sugar beet cellulose nanofibril-reinforced composites[J]. Cellulose, 2007,14(5):419-425.
    79 Nakagaito A, Yano H. The effect of morphological changes from pulp fiber towards nano-scale f ibrillated cellulose on the mechanical properties of high-strength plant fiber based composites[J]. Applied Physics A:Materials Science & Processing, 2004, 78(4):547-552.
    80 Saito T, Hirota M, Tamura N, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions [J]. Biomacromolecules, 2009,10 (7):1992-1996.
    81 Cha R, He Z, Ni Y. Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose[J]. Carbohydrate Polymers, 2012,48(9):1539-1547.
    82 Hubbe M A, Ayoub A, Daystar J S, et al. Enhanced absorbent products incorporating cellulose and its derivatives:A review [J]. BioResources,2013,8 (4):6556-6629.
    83 Xing Q, Zhao F, Chen S, et al. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture[J]. Acta Biomaterialia, 2010,6(6):2132-2139.
    84 Chang C, Duan B, Zhang L. Fabrication and characterization of novel macroporous cellulose-alginate hydrogels[J]. Polymer, 2009,50 (23):5467-5473.
    85 Liang H F, Hong M H, Ho R M, et al. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel[J]. Biomacromolecules,2004,5(5):1917-1925.
    86 Long D D, Luyen D V. Chitosan-carboxymethylcellulose hydrogels as supports for cell immobilization[J]. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 1996, 33(12):1875-1884.
    87 Sannino A, Madaghiele M, Conversano F, et al. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability[J]. Biomacromolecules, 2004,5(1):92-96.
    88 Paakko M, Vapaavuori J, Silvennoinen R, et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities [J]. Soft Matter, 2008,4(12):2492-2499.
    89 Kalia S, Dufresne A, Cherian B M, et al. Cellulose-based bio-and nanocomposites:A review[J]. International Journal of Polymer Science, 2011,2011:Article ID 837875.
    90 Kanjanamosit N, Muangnapoh C, Phisalaphong M. Biosynthesis and characterization of bacteria cellulose-alginate film[J]. Journal of Applied Polymer Science, 2010,115(3):1581-1588. 91 Frensemeier M, Koplin C, Jaeger R, et al. Mechanical properties of bacterially synthesized nanocellulose hydrogels [J]. Macromolecular Symposia, 2010,294 (2):38-44.
    92 Wang Y, Chang C, Zhang L. Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges[J]. Macromolecular Materials and Engineering, 2010,295 (2):137-145.
    93 Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair[J]. Carbohydrate Polymers, 2012,92(2013):1432-1442.
    94 Oshima T, Taguchi S, Ohe K, et al. Phosphorylated bacterial cellulose for adsorption of proteins [J]. Carbohydrate Polymers, 2011,83(2):953-958.
    95 Halib N, Amin M C I M, Ahmad I, et al. Swelling of bacterial cellulose-acrylic acid hydrogels: sensitivity towards external stimuli[J]. Sains Malaysiana, 2009, 38(5):785-791.
    96 Petersen N, Gatenholm P. Bacterial cellulose-based materials and medical devices:current state and perspectives [J]. Applied Microbiology and Biotechnology, 2011,91(5):1277-1286.
    97 李喆,王华平,陈仕艳.一种潜在的组织工程支架材料——细菌纤维素[J].组织工程与重建外科杂志,2009,5(2):111-113.
    98李琳.TEMPO-NaC10-NaBr选择性氧化微晶纤维素C6位伯羟基的研究[D].青岛科技大学,2010:17.
    99孙宾,武利顺.医用可吸收氧化纤维素及其氧化体系研究进展[J].中国纺织大学学报,2000,26(004):110-114.
    100 Moser C E. Oxidized cellulose product and method for preparing the same[P]. US:3, 364, 200, 1968.
    101 Kumar V, Dong Y. Biodegradable oxidized cellulose esters[P]. US:2, 002, 053, 599,2002.
    102 Kumar V, Yang D. Oxidized cellulose esters:I. Preparation and characterization of oxidized cellulose acetates—a new class of biodegradable polymers [J]. Journal of Biomaterials Science, Polymer Edition,2002,13(3):273-286.
    103 Dan Dimitrijevich S, Tatarko M, Gracy R W, et al. Biodegradation of oxidized regenerated cellulose[J]. Carbohydrate Research, 1990,195(2):247-256.
    104 Abaev I, Kaputskii V, Adarchenko A, et al. Mechanism of the antibacterial action of monocarboxycellulose and other ion-exchange derivatives of cellulose[J]. Antibiotics and medical biotechnology, 1986,31(8):624-628.
    105 Tokunaga Y, Kojima T, Naruse T. Antitumor effect of oxycellulose as a hemostatic during operation[J]. Cancer biotherapy & radiopharmaceuticals, 1998,13(6):437-445.
    106 Pollack R, Bouwsma 0. Applications of oxidized regenerated cellulose in periodontal therapy: Part 1[J]. Compendium (Newtown, Pa.),1992, 13(10):888,890,892.
    107 Dol'berg E, Shuteeva L, Yasnitskii B, et al. Certain aspects of interaction of oxidized cellulose with pharmaceutical compounds[J]. Pharmaceutical Chemistry Journal,1974,8(7):414-417.
    108 Prikryl P, Lenfeld J, Horak D, et al. Magnetic Bead Cellulose as a Suitable Support for Immobilization of α-Chymotrypsin[J], Applied Biochemistry and Biotechnology, 2012, 168(2):295-305.
    109 Kumar V, Deshpande G S. Noncovalent immobilization of bovine serum albumin on oxidized cellulose[J]. Artificial Cells, Blood Substitutes and Biotechnology, 2001,29(3):203-212.
    110高长有,李安,益小苏.多孔聚合物材料的应用及其生物相容性[J].生物医学工程学杂志,1999,16(4):511-515.
    111 Klawitter J, Hulbert S. Application of porous ceramics for the attachment of load bearing internal orthopedic applications[J]. Journal of Biomedical Materials Research, 1971,5(6):161-229.
    112 Lee W, Debasitis J C, Lee V K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication[J]. Biomaterials, 2009, 30(8)=1587-1595.
    113 Oxley H, Corkhill P, Fitton J, et al. Macroporous hydrogels for biomedical applications: methodology and morphology[J]. Biomaterials,1993,14(14):1064-1072.
    114 O'Neill C, Jordan P, Riddle P, et al. Narrow linear strips of adhesive substratum are powerful inducers of both growth and total focal contact area[J]. Journal of Cell Science, 1990, 95(4):577-586.
    115陆树洋,孙晓宁,王春生.小口径人工管及其内皮化策略的研究进展[J].复旦学报(医学版),2013,40(01):92-96.
    116 Lee S D, Hsiue G H, Chang P C T, et al. Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials[J]. Biomaterials, 1996, 17(16):1599-1608.
    117 Sant S, Hancock M J, Donnelly J P, et al. Biomimetic gradient hydrogels for tissue engineering[J]. The Canadian Journal of Chemical Engineering, 2010,88(6):899-911.
    118魏杰,李玉宝,彭雪林,等.纳米磷灰石晶体/聚酰胺复合骨组织工程支架材料的研究[J].高技术通讯,2004,14(1):47-51.
    119 Puskas J E, Chen Y. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement [J]. Biomacromolecules, 2004,5(4):1141-1154.
    120李心刚,胡桂秋,黄晶.冻干工艺中预冻温度的确定[J].承德石油高等专科学校学报,2005,7(4):19-20.
    121耿锟锟,熊非,朱家壁,等.用于药物制剂的冷冻干燥技术及相关影响因素[J].药学进展,2011,35(3):104-109.
    122李艳聪,李书环.真空冷冻干燥技术及其在食品加工中的应用[J].天津农学院学报,2003,10(1):42-45.
    123万军,黄华.制剂药品的冻干原理和技术[J].黑龙江科技信息,2009,8:185.
    124王洁,黄传伟,安源,等.真空冷冻干燥的工艺流程[J].医疗卫生装备,2012,33(9):90-91.
    125梁艳英,魏冬梅,张莉.大型仪器共享系统中冻干机的开放使用与维护[J].安徽农业科学,2013,41(7):3287-3288.
    126崔清亮,郭玉明,郑德聪.基于干燥动力学特性的冷冻干燥过程判别[J].农业机械学报,2010,(4):124-127.
    127郭圣荣.医药用生物降解性高分子材料[M].北京:化学工业出版社.2004:1.
    128杨海江,闫爱春,杨瑞敏.可降解高分子生物材料在整形外科术后防粘连中的应用[J].中国组织工程研究与临床康复,2010,14(38):7157-7160.
    129杨立新,王亮燕,谢志刚,等.侧链为光敏感基团的可生物降解聚氨酯的合成及表征[J].高分子学报,2013,(1):43-49.
    130医疗器械生物学评价第13部分:聚合物医疗器械的降解产物的定性与定量[S].GBT 16886.13-2001.
    131顾其胜,侯春林,徐政.实用生物医用材料学[M].上海科学技术出版社.2005:57-80.
    132 Sung H J, Meredith C, Johnson C, et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis[J]. Biomaterials, 2004,25 (26):5735-5742.
    133 Speakman J B, Chamberlain N H. The production of rayon from alginic acid[J]. Journal of the Society of Dyers and Colourists, 1944,60(10):264-272.
    134 Gaserod O, Smidsrod O, Skjak-Braek G. Microcapsules of alginate-chitosan-I:a quantitative study of the interaction between alginate and chitosan[J]. Biomaterials, 1998,19(20):1815-1825.
    135 A1 Shamkhani A, Duncan R. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo [J]. Journal of Bioactive and Compatible Polymers, 1995,10(1):4-13.
    136 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005,26(27):5474-5491.
    137 Kim U J, Park J, Joo Kim H, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin [J]. Biomaterials, 2005,26(15):2775-2785.
    138 International Organization for Standardization. 1995. Plastics-Determination of tensile properties-Part 3:Text conditions for films and sheets[S]. IS0527-3.
    139 Wong T W, Chan L W, Kho S B, et al. Aging and microwave effects on alginate/chitosan matrices [J]. Journal of Controlled Release, 2005,104(3):461-475.
    140张传杰,朱平,王怀芳.高强度海藻酸盐纤维的制备及其结构与性能研究[J].天津工业大学学报,2008, 27(5):23-27.
    141 Ribeiro C C, Barrias C C, Barbosa M A. Calcium phosphate-alginate microspheres as enzyme delivery matrices[J]. Biomaterials, 2004,25(18):4363-4373.
    142祝志峰.浆料成膜机理与浆膜性能的关系[J].棉纺织技术,2008,36(8):22-25.
    143 Bersted B, Anderson T. Influence of molecular weight and molecular weight distribution on the tensile properties of amorphous polymers[J]. Journal of Applied Polymer Science, 1990, 39(3):499-514.
    144张新.不同材料构建组织工程软骨及支架的应用[J].中国组织工程研究,2012,16(8):1491-1495.
    145李明忠,卢神州,吴徵宇,等.多孔丝素膜的制备及其形态结构[J].纺织学报,2000,21(5):268-271.
    146张洁,徐烈.冻干支架孔隙形态的影响因素[J].低温工程,2002,(2):38-43.
    147 Kang H W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering [J]. Biomaterials,1999,20(14):1339-1344.
    148王理,黎坚,杨亚江.水分子凝胶聚集态的DSC和AFM研究[J].化学学报,2003,61(2):213-217.
    149 Mandal B B, Kundu S C. Cell proliferation and migration in silk fibroin 3D scaffolds[J]. Biomaterials,2009,30(15):2956-2965.
    150 Pereira R, Carvalho A, Vaz D C, et al. Development of novel alginate based hydrogel films for wound healing applications [J]. International Journal of Biological Macromolecules,2012, 52(2013):221-230.
    151高长有,李安.促进组织生长的聚合物骨架工程材料[J].功能高分子学报,1998,11(3):408-414.
    152 Khan F, Ahmad S R. Polysaccharides and their derivatives for versatile tissue engineering application[J]. Macromolecular Bioscience, 2013,13:395-421.
    153 Kong H J, Kaigler D, Kim K, et al. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution [J]. Biomacromolecules,2004, 5(5):1720-1727.
    154 Xu Y, Li L, Yu X, et al. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation[J]. Carbohydrate Polymers,2012, 87(2):1589-1595.
    155梁晔,刘万顺,韩宝芹,等.一种新型生物交联剂的制备及其性质[J].中国海洋大学学报,2008,38(4):590-594.
    156 Bidarra S J, Barrias C C, Granja P L. Injectable alginate hydrogels for cell delivery in tissue engineering [J]. Acta Biomaterialia, 2014,10(4):1646-1662.
    157 Pantaleone D, Yalpani M, ScollarM. Unusual susceptibility of chitosan to enzymic hydrolysis [J]. Carbohydrate Research, 1992,237:325-332.
    158 Aalmo K M, Painter T J. Periodate oxidation of methyl glycopyranosides:rate coefficients and relative stabilities of intermediate hemiacetals[J]. Carbohydrate Research, 1981,89(1):73-82.
    159 Asker M M S, Shawky B T. Structural characterization and antioxidant activity of an extracellular polysaccharide isolated from Brevibacterium otitidis BTS 44[J]. Food Chemistry, 2010, 123(2):315-320.
    160 Bouhadir K H, Lee K Y, Alsberg E, et al. Degradation of partially oxidized alginate and its potential application for tissue engineering[J]. Biotechnology progress, 2008,17(5):945-950.
    161 Pescosolido L, Piro T, Vermonden T, et al. Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins[J]. Carbohydrate Polymers, 2011, 86(1):208-213.
    162鲁路,刘新星,童真.海藻酸盐凝胶化及其在软骨组织工程和药物控释领域的应用[J].高分子学报,2010,(12):1351-1358.
    163 Leal D, Matsuhiro B, Rossi M, et al. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds[J]. Carbohydrate Research, 2008,343(2):308-316.
    164邹局春,郑志锋,凌敏,等.核桃壳纤维素降解的FTIR特征[J].林业科学,2008,44(3):129-134.
    165孙言蓓.新型海藻酸盐—明胶水凝胶的研究[D].天津大学,2007:26.
    166 Balakrishnan B, Lesieur S, Labarre D, et al. Periodate oxidation of sodium alginate in water and in ethanol-water mixture:a comparative study[J]. Carbohydrate Research, 2005, 340(7):1425-1429.
    167 Masson C R. The degradation of carrageenan:1. kinetics in aqueous solution at pH 7[J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie,1955,33:597-603.
    168 Myslabodski D E, Stancioff D, Heckert R A. Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS[J]. Carbohydrate Polymers, 1996,31(1):83-92.
    169 Gao C, Liu M, Chen J, et al. Preparation and controlled degradation of oxidized sodium alginate hydrogel [J]. Polymer Degradation and Stability, 2009,94(9):1405-1410.
    170 Boontheekul T, Kong H J, Mooney D J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution[J]. Biomaterials, 2005,26(15):2455-2465.
    171 Pu X M, Yao Q Q, Yang Y, et al. In vitro degradation of three-dimensional chitosan/apatite composite rods prepared via in situ precipitation[J]. International Journal of Biological Macromolecules,2012,51(5):868-873.
    172 Chen C, Gao C M, Liu M Z, et al. Preparation and characterization of OSA/CS core-shell microgel: in vitro drug release and degradation properties [J]. Journal of Biomaterials Science-Polymer Edition, 2013,24(9):1127-1139.
    173孙涛,周冬香,朱颖娜,等.羧甲基壳聚糖的降解及其抗氧化性能的研究[J].食品科学,2007,28(1):54-57.
    174 Vieira E F, Cestari A R, Airoldi C, et al. Polysaccharide-based hydrogels:Preparation, characterization, and drug interaction behaviour[J]. Biomacromolecules, 2008,9(4):1195-1199.
    175周贵,奚廷斐,郑裕东,等.三种羧甲基壳聚糖防粘连膜的降解及其生物相容性[J].中国组织工程研究与临床康复,2009,13(8):1411-1418.
    176 Lou W, Zhang H, Ma J, et al. In vivo evaluation of in situ polysaccharide based hydrogel for prevention of postoperative adhesion[J]. Carbohydrate Polymers, 2012,90(2):1024-1031.
    177 Chen F, Tian M, Zhang D, et al. Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering[J]. Materials Science and Engineering:C, 2012,32(2):310-320.
    178 Li X, Weng Y, Kong X, et al. A covalently crosslinked polysaccharide hydrogel for potential applications in drug delivery and tissue engineering[J]. Journal of Materials Science:Materials in Medicine,2012,23(12):2857-2865.
    179刘玉艳,储顺礼,李男男,等.不同质量比N, O-CMC/n-β-TCP复合材料在模拟体液中的降解性能[J].吉林大学学报(医学版),43(1):552-556.
    180 Zhao X, Kato K, Fukumoto Y, et al. Synthesis of bioadhesive hydrogels from chitin derivatives [J]. International Journal of Adhesion and Adhesives, 2001,21(3):227-232.
    181 Wasikiewicz J M, Yoshii F, Nagasawa N, et al. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods[J]. Radiation Physics and Chemistry, 2005, 73(5):287-295.
    182王钦权,王远红,吕志华.0-羧甲基壳聚糖的制备及其结构表征[J].中国海洋大学学报(自然科学版),2011,41(S1):356-358.
    183 Guo Z, Ren J, Dong F, et al. Comparative study of the influence of active groups of chitosan derivatives on antifungal activity [J]. Journal of Applied Polymer Science, 2013,127(4):2553-2556. 184 Shinoda R, Saito T, Okita Y, et al. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils[J]. Biomacromolecules, 2012,13(3):842-849.
    185唐莹莹,潘志娟.再生纤维素纤维的结构与力学性能的研究[J].国外丝绸,2009,24(3):10-12.
    186 Khil M S, Kim H Y, Kang Y S, et al. Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior[J]. Macromolecular Research, 2005,13(1):62-67.
    187 Peng S, Zheng Y, Wu J, et al. Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide[J]. Polymer Bulletin, 2012,68(2):415-423.
    188 Wu Y, He J, Cheng W, et al. Oxidized regenerated cellulose-based hemostat with microscopically gradient structure [J]. Carbohydrate Polymers, 2012,88(2012):1023-1032.
    189 Invitrogen. Cell line collection[J]. Bioscience Technology, 2007,32(10):42.
    190 Shi Q, Zhou C, Yue Y, et al. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals[J]. Carbohydrate Polymers, 2012, 90(1):301-308.
    191 He W, Jiang S, Zhang Q, et al. Isolation and Characterization of Cellulose Nanofibers from Bambusa rigida[J]. BioResources, 2013,8(4):5678-5689.
    192 Noga M, Edinger D, Klager R, et al. The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes[J]. Biomaterials,2013,34(10):2530-2538.
    193 Shibata I, Isogai A. Depolymerization of cellouronic acid during TEMPO-mediated oxidation[J]. Cellulose,2003,10(2):151-158.
    194 Bai W, Holbery J, Li K. A technique for production of nanocrystalline cellulose with a narrow size distribution [J]. Cellulose, 2009,16 (3):455-465.
    195 Pan Y, Han G, Mao Z, et al. Structural characteristics and physical properties of lotus fibers obtained from Nelumbo nucifera petioles[J]. Carbohydrate Polymers, 2011,85(1):188-195.
    196 Missoum K, Belgacem M N, Bras J. Nanofibrillated Cellulose Surface Modification:A Review[J]. Materials,2013,6(5):1745-1766.
    197胡月.纳米纤维素/聚乙烯醇复合材料的研究[D].南京林业大学,2012:12.
    198徐寅.纳米纤维素晶须/壳聚糖可降解包装复合膜的制备与研究[D].浙江理工大学,2011:25.
    199 d'Almeida A, Barreto D, Calado V, et al. Thermal analysis of less common lignocellulose fibers[J]. Journal of Thermal Analysis and Calorimetry, 2008,91(2):405-408.
    200 Bismarck A, Mohanty A K, Aranberri-Askargorta I, et al. Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers[J]. Green chemistry, 2001,3 (2):100-107.
    201 Oyane A, Kim H M, Furuya T, et al. Preparation and assessment of revised simulated body fluids [J]. Journal of Biomedical Materials Research Part A, 2003,65(2):188-195.
    202杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社.2001:198.
    203 Krlzova P, Masova L, Suttnar J, et al. The influence of intrinsic coagulation pathway on blood platelets activation by oxidized cellulose[J]. Journal of Biomedical Materials Research Part A, 2007, 82(2):274-280.
    204 Kumar V, Yang T. HNO3/H3PO4-NANO2 mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation[J]. Carbohydrate Polymers, 2002,48(4):403-412.
    205张少锋,洪加源.医用生物可吸收止血材料的研究现状与临床应用[J].中国组织工程研究,2012,16(21):3941-3944.
    206 Sharma J B, Gupta N, Mittal S. Creation of neovagina using oxidized cellulose (surgicel) as a surgical treatment of vaginal agenesis[J]. Archives of Gynecology and Obstetrics, 2007, 275(4):231-235.
    207 Mao S, Zhang T, Sun W, et al. The depolymerization of sodium alginate by oxidative degradation[J]. Pharmaceutical Development and Technology, 2012,17(6):763-769.
    208 Noorani S, Simonsen J, Atre S. Nano-enabled microtechnology:Polysulfone nanocomposites incorporating cellulose nanocrystals[J]. Cellulose, 2007,14(6):577-584.
    209 Sehaqui H, Zhou Q, Ikkala 0, et al. Strong and tough cellulose nanopaper with high specific surface area and porosity[J]. Biomacromolecules, 2011,12(10):3638-3644.
    210 Kim B S, Park I K, Hoshiba T, et al. Design of artificial extracellular matrices for tissue engineering[J]. Progress in Polymer Science, 2011,36(2):238-268.
    211 Jankovic B, Pelipenko J, Skarabot M, et al. The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers[J]. International Journal of Pharmaceutics,2013,455(1):338-347.
    212 Lin N, Bruzzese C, Dufresne A. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges[J]. ACS applied materials & interfaces, 2012,4(9):4948-4959.
    213 Ninan N, Muthiah M, Park I-K, et al. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering[J]. Carbohydrate Polymers, 2013,98(1):877-885.
    214 Fujii S, Miyanari Y, Nishimura T, et al. In vitro degradation of hydroxyapatite nanoparticle-coated biodegradable microspheres[J]. Polymer Degradation and Stability, 2013, 98(1):377-386.
    215 Nguyen V N, Vauthier C, Huang N, et al. Degradation of hydrolyzable hydrogel microspheres [J]. Soft Matter,2013,9 (6):1929-1936.