航天器近距离相对运动轨迹规划与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间交会对接和编队飞行技术的发展与应用,航天器近距离相对运动成为当前航天领域的研究热点与前沿。预计今后航天器近距离相对飞行将成为空间活动的日常形式。论文以航天器近距离相对运动的轨迹规划与控制为中心,系统研究了自然周期相对轨迹设计、相对状态转移轨迹规划和相对运动控制等问题,并将其应用于航天器近距离观测和空间机器人抓捕两类典型任务。
     首先,论文以二体条件下三种常见相对运动模型(C-W方程、T-H方程和几何法相对运动模型)的一阶解析解为基础,研究了自然周期相对轨迹的设计问题,建立了设计参数与相对轨迹形状大小的直观对应关系,给出了平根数空间下J2不变周期相对轨迹的设计方法。通过仿真自然周期相对轨迹的漂移,分析了不同模型的误差,给出了模型的适用度准则。
     其次,针对不同的推力模式,系统研究了脉冲推力、继电型推力和连续常值小推力作用下相对状态转移的轨迹规划问题。在二脉冲机动模型基础上,针对近圆参考轨道,给出了基于导航点的多脉冲固定时间转移轨迹生成模型;研究了适用于任意偏心率轨道的基于随机优化的多脉冲自由时间转移轨迹生成策略。对继电型推力模式,利用离散化动力学模型,考虑线性化状态约束、控制约束和安全性约束,建立了线性规划或混合整数线性规划形式的轨迹规划模型。对连续常值小推力模式,推导了常值控制下的状态解析表达,应用极小值原理,分别解决了近圆参考轨道和椭圆参考轨道相对状态转移的最小时间轨迹和最小能量轨迹生成问题。仿真算例验证了以上模型与算法的有效性。
     第三,研究了航天器近距离相对运动的控制策略和控制器设计问题,给出了相应的仿真结果。描述了相对运动控制的仿真框架,通过引入误差盒提出了三种控制策略。基于完全非线性相对动力学模型推导了滑模变结构反馈控制律,该控制律鲁棒性强,适用于任意偏心率参考轨道,具有偏差渐近收敛、控制参数便于调节等优点。通过引入集合理论,采用鲁棒可变时域模型预测控制和混合整数线性规划,有效解决了航天器近距离相对运动状态转移的鲁棒控制问题,可以确保鲁棒可行和鲁棒完成。
     第四,针对近圆轨道目标,从动力学出发,研究了航天器近距离观测的任务轨迹设计与控制问题。通过分析C-W方程特性提出了椭圆型、振荡型、跳跃型和飞跃型四种基本的相对运动类型。考虑碰撞避免,提出了自然椭圆绕飞、自然螺旋绕飞、单脉冲“水滴”形绕飞、多脉冲圆形绕飞和多脉冲“田径场”形绕飞五种绕飞观测轨迹模式,以及自然椭圆V-bar方位观测、单脉冲受限R-bar方位观测和多脉冲受限任意方位观测三种局部观测轨迹模式,给出了相应的仿真算例。利用修正罗德里格斯参数建立了六自由度动力学模型,假设仅使用推力器控制,推导了考虑航天器形状和推力器配置的六自由度滑模控制律,有效解决了六自由度耦合推力控制问题。
     最后,针对空间机器人抓捕的机动逼近问题,分别研究了三轴稳定卫星和无控旋转卫星的机动逼近策略。前者属于三自由度问题,采用直线逼近策略,给出了多脉冲直线逼近模型,提出了一种基于切向脉冲与径向连续推力组合机动的V-bar逼近策略。后者属于六自由度问题,建立了飞越逼近和同步控制逼近模型,利用自适应输出反馈控制,分别推导了轨道同步和姿态同步跟踪控制律,仿真算例验证了模型与算法的有效性。
     总之,论文系统研究了航天器近距离相对运动轨迹规划与控制的理论方法、模型与算法,并针对航天器近距离观测任务和空间机器人抓捕任务进行了应用设计与分析。研究工作对航天器相对运动任务规划进行了有益探索,为进一步深入研究奠定了坚实基础。
With the development and application of space rendezvous and docking and formation flying technology, spacecraft proximity relative motion has been a key concern in space domain. In the future, spacecraft proximity operations will be routine in space activities. The paper aims at investigating trajectory planning and control for spacecraft proximity relative motion. The natural periodic relative trajectory design, relative state transition trajectory planning and relative motion control are discussed and applied in the spacecraft proximity inspection and space robot capture missions.
     Firstly, under the general two-body problem, the natural periodic relative trajectory design is solved one by one for three different linearized relative motion models. As a result, the simple and obvious relations between the design parameters and the relative trajectory shape are established. Considering the notable influence of the J2 perturbation, J2 invariant relative orbits are presented in the mean orbital element space. And the choice guidelines of relative motion models are summarized by errors analysis with numerical simulations.
     Secondly, the trajectory planning models and algorithms are examined in depth based on three different thrust modes named impulse thrust, Bang-Bang thrust and continuous constant low thrust. For impulse thrust mode, on the basis of the two-impulse maneuver models, a new trajectory generation strategy is put forward to solve finite-time relative state transition in circular reference orbits. Moreover, according to randomized tree-based A* network search algorithm, the constrained multi-impulse transition trajectory is fast generated and sub-optimized, which is valid for arbitrary elliptical orbits. For Bang-Bang thrust mode, the LP or MILP trajectory planning model is established and simulated by applying discrete dynamics model and a great variety of linear constraints, including state constraints, control constraints and security constraints. For continuous constant low thrust, with the derived state analytic solutions under constant control and Minimum Theory, the minimum-time maneuver and minimum-fuel maneuver is solved for relative state transition in circular and elliptical reference orbits respectively. The simulations validate the effectiveness of models and algorithms.
     Thirdly, the control strategies and controller design for spacecraft relative motion are studied and the simulation results are also provided. The general simulation framework and three control strategies are presented by bringing in an error box. The robust sliding mode feedback control law, whose control parameters are easy to adjust, is derived from the fully nonlinear dynamics model and sliding mode control theory. It is valid for arbitrary elliptical orbits. And the derivations converge asymptotically. The robust control problem of spacecraft proximity relative motion, considering control constraints, state constraints, unknown bounded disturbance, control error and navigation error, is solved by set theory, mixed-integer linear programming and variable horizon model predictive control, which guarantees robust feasibility and finite-time entry of the target set.
     Fourthly, for the target in a circular orbit, the trajectory design and control are investigated for spacecraft proximity inspection mission. Four elementary relative trajectories, i.e. the elliptic, oscillating, hop and overflying trajectories, are proposed by analyzing C-W equations. In consideration of collision avoidance, the flyaround inspection and local inspection missions are studied respectively. For flyaround inspection, five mission patterns, i.e. natural elliptical flyaround inspection, natural spiral flyaround inspection, single-impulse tear-drop flyaround inspection, multi-impulse circular flyaround inspection and multi-impulse gymkhana flyaround inspection, are proposed. For local inspection, three mission patterns, i.e. natural elliptical V-bar inspection, single-impulse R-bar inspection and multi-impulse arbitrary inspection are presented. For each mission pattern, the simulation is given. Moreover, a coupled 6-DOF dynamics model is derived from the fully nonlinear relative dynamics equations and attitude kinematics equations described by Modified Rodrigues Parameters. Given the size and thruster layout of the spacecraft, a globally stable sliding mode robust control law is derived to solve 6-DOF coupled thrust control problem.
     Finally, for space robots capture mission, the approach process is studied respectively for three-axis control satellites and uncontrolled rotating satellites. The former belongs to 3-DOF problem and adopts the straight line approach strategy, whose general model is given. And a new strategy for V-bar approach is presented based on the combination of a tangential impulse maneuver and a constant continuous radial thrust maneuver. The latter belongs to 6-DOF problem and the models of fly-by approach and synchronization control approach are formulated. The control laws for translational and rotational synchronization are derived respectively by adaptive output feedback control. The simulations validate the effectiveness.
     To sum up, by modeling and simulating, the paper systematically studies the methods, models and algorithms of trajectory planning and control for spacecraft proximity relative motion, which are applied in the trajectory design and control for the spacecraft proximity inspection and space robots capture missions. All of these provide a good foundation to further research in spacecraft relative motion mission planning.
引文
[1] Woffinden D C, Geller D K. Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital Rendezvous[C]. AIAA 2006-6030, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, 21-24 August 2006
    [2]林来兴.空间交会对接技术[M].北京:国防工业出版社, 1995: 2-16
    [3]肖建军.美国自主空间交会对接技术的发展[J]. 863航天航空技术, 2005(5): 40-44
    [4]崔乃刚,王平,郭继峰.空间在轨服务技术发展综述[J].宇航学报, 2007, 28(4): 33-39
    [5]翟光,仇越,梁斌.在轨捕获技术发展综述[J].机器人, 2008, 30(5): 467-480
    [6] Kasai T, Oda M, Suzuki T. Result of the ETS-VII Mission - Rendezvous Docking and Space Robotics Experiments[C]. Proc. Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1-3 June 1999: 299-306
    [7]张玉锟.卫星编队飞行的动力学与控制技术研究[D].长沙:国防科技大学博士学位论文, 2002
    [8]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].长沙:国防科技大学博士学位论文, 2006
    [9]安雪滢.椭圆轨道航天器编队飞行动力学及应用研究[D].长沙:国防科技大学博士学位论文, 2006
    [10]张育林,曾国强,王兆魁.分布式卫星系统理论及应用[M].北京:科学出版社, 2008
    [11]刘晓恩.美国空间对抗武器技术发展研究[J].航天电子对抗, 2005, 21(3): 4-7
    [12]吴勤,高雁翎.美国空间对抗装备的新进展[J].航天电子对抗, 2007, 23(3): 1-7
    [13] Fredrickson S E, Duran S G, Mitchell J D. Mini AERCam Inspection Robot for Human Space Missions[C]. AIAA 2004-5843, Space 2004 Conference and Exhibit, San Diego, California, 28-30 September 2004
    [14] Fredrickson S E, Duran S G, Braun A N. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles[C]. AIAA 2006- 7392, Space 2004 Conference and Exhibit, San Jose, California, 19-21 September 2006
    [15]林来兴. XSS-10和XSS-11技术和空间飞行演示[J]. 863航天航空技术, 2004(5): 20-31
    [16]李俊峰,高云峰,宝音贺西.卫星编队飞行动力学与控制研究[J].力学与实践, 2002, 24(2): 1-6
    [17]高云峰,宝音贺西,李俊峰.卫星编队飞行中C-W方程与轨道根数法的比较[J].应用数学和力学, 2003, 24(8): 799-804
    [18]林来兴.微小卫星编队飞行及应用论文集[C].国家高技术航天领域专家委员会微小卫星技术组, 2000.7
    [19]林来兴.近距离空间交会动力学[J].中国空间科学技术, 1998, 18(2): 40-47
    [20]朱仁璋,林彦,李颐黎.空间交会V-bar接近冲量运动分析[J].中国空间科学技术, 2003, 23(3): 1-6
    [21]朱仁璋,林彦,李颐黎.论空间交会中的径向连续推力机动与N次推力机动[J].中国空间科学技术, 2004, 25(3): 21-28
    [22]朱仁璋,尹艳.空间交会最终平移段制导设计[J].中国空间科学技术, 2004, 24(5): 1-8
    [23]朱仁璋,汤溢.空间交会接近与绕飞设计[J].中国空间科学技术, 2005, 25(1): 7-14
    [24] Sparks A. Satellites Formationkeeping Control in the Presence of Gravity Perturbations [C]. Proceedings of the American Control Conference, Chicago, Illinois, June 2000: 844-848
    [25] Alfriend K T, Schaub H, Gim D. Gravitational Perturbations Nonlinearity and Circular Orbit Assumption Effects on Formation Flying Control Strategies [C]. AAS 00-012, AAS Guidance and Control Conference, Breckenridge, CO, Feb. 2-6, 2000
    [26]何焱,谈细春.空间交会对接中Hill方程的计算误差特性研究[J].中国空间科学技术, 1998, 18(6): 7-14
    [27]张振民,许滨,张珩.航天器相对运动与Hill解的适用性分析[J].中国空间科学技术, 2002, 22(2): 1-8
    [28]张振民,林来兴.小卫星编队飞行动力学及其应用[J].航天控制, 2002(3): 44-50
    [29]林来兴.卫星编队飞行动力学仿真及其应用[J].中国空间科学技术, 2005, 25(2): 26-33
    [30] Van der Ha J, Mugellesi R. Analytical Models for Relative Motion under Constant Thrust [J]. Journal of Guidance, Control and Dynamics, 1990, 13(4): 644-650
    [31] Carter T E. Linearized Impulsive Rendezvous Problem [J]. Journal of Optimization Theory and Applications, 1995, 86(3): 553-584
    [32]王兆魁.分布式卫星动力学建模与控制研究[D].长沙:国防科技大学博士学位论文, 2006.04
    [33] Carter T E. New Form for the Optimal Rendezvous Equations Near a Keplerian Orbit [J]. Journal of Guidance, Control and Dynamics, 1990, 13(1): 183-186
    [34] Tillerson M, How J P. Formation Flying Control in Eccentric Orbits[C]. AIAAGuidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 6-9 August 2001
    [35] Inalhan G, Tillerson M, How J P. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits [J]. Journal of Guidance, Control and Dynamics, 2002, 25(1): 48-59
    [36] Shan J, Liu H, Liu G. Dynamics and Fuzzy Control for Formation Flying with Elliptical Reference Orbits[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 16-19 August 2004
    [37]王鹏基.空间飞行器编队飞行相对动力学与队形控制方法及应用研究[D].哈尔滨工业大学博士学位论文, 2004
    [38]于萍,张洪华.椭圆轨道编队飞行的典型模态与构形保持控制方法[J].宇航学报, 2005, 26(1): 7-12
    [39] Melton R G. Time-Explicit Representation of Relative Motion between Elliptical Orbits [J]. Journal of Guidance, Control and Dynamics, 2000, 23(4): 604-610
    [40] Vaddi S S, Vadali S R, Alfriend K T. Formation Flying: Accommodating Nonlinearity and Eccentricity Perturbations [J]. Journal of Guidance, Control and Dynamics, 2003, 26(2): 214-223
    [41]于绍华.绳系卫星系统中的周期运动[J].宇航学报, 1997, 18(3): 51-58
    [42] Karlgaard C D, Lutze F H. Second-Order Equations for Rendezvous in a Circular Orbit [J]. Journal of Guidance, Control and Dynamics, 2004, 27(3): 499-501
    [43]高云峰,宝音贺西,李俊峰.卫星编队飞行的动力学特性与相对轨道构形仿真[J].清华大学学报(自然科学版), 2002, 42(4): 458-461
    [44] Sengupta P, Vadali S R, Alfriend K T. Modeling and Control of Satellite Formations in High Eccentricity Orbits [J]. Journal of the Astronautical Sciences, 2004, 52(1-2): 149-168
    [45]肖业伦,张晓敏.编队飞行卫星群的轨道动力学特性与构型设计[J].宇航学报, 2001, 22(4): 7-12
    [46]杨宇,韩潮.编队飞行卫星群描述及摄动分析[J].中国空间科学技术, 2002, 22(2): 15-23
    [47] D’Amico S, Montenbruck S. Proximity Operations of Formation Flying Spacecraft Using an Eccentricity/Inclination Vector Separation [J]. Journal of Guidance, Control and Dynamics, 2006, 29(3): 554-563
    [48] Gurfil P, Kasdin N J. Nonlinear Modeling of Spacecraft Relative Motion in the Configuration Space [J]. Journal of Guidance, Control and Dynamics, 2004, 27(1):154-157
    [49] Lane C, Axelrad P. Formation Design in Eccentric Orbits Using Linearized Equations of Relative Motion. Journal of Guidance, Control and Dynamics, 2006, 29(1): 146-160
    [50] Yan Q, Yang G, Kapila V, et al. Nonlinear Dynamics and Output Feedback Control of Multiple Spacecraft in Elliptical Orbits [C]. Proceedings of the American Control Conference, Chicago, Illinois, June 2000
    [51] Pan H, Kapila V. Adaptive Nonlinear Control for Spacecraft Formation Flying with Coupled Translational and Attitude Dynamics [C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2001
    [52] Wong H, Pan H, Kapila V. Output Feedback Control for Spacecraft Formation Flying with Coupled Translation and Attitude Dynamics [C]. Proceedings of the American Control Conference, Portland, OR, June 2005
    [53] Gaulocher S. Modeling the Coupled Translational and Rotational Relative Dynamics for Formation Flying Control [C]. AIAA 2005-6091, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, August 15-18, 2005
    [54] Xu Y, Tatsch A, Fitz-Coy N G. Chattering Free Sliding Model Control for a 6 DOF Formation Flying Mission [C]. AIAA 2005-6464, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 15-18 Aug 2005
    [55] Hashizume Y, Imado F. A Study on Rendezvous Docking Control of HOPE [C]. Proceedings of the IEEE International Conference on Control Applications, Taipei, Taiwan, September 2-4, 2004: 436-441
    [56] Geller D K. Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, August 15-18, 2005
    [57] Singla P, Subbarao K, Junkins J L. Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking under Measurement Uncertainty [J]. Journal of Guidance, Control and Dynamics, 2006, 29(4): 892-902
    [58] Woffinden D. On-Orbit Satellite Inspection Navigation and ?v Analysis [D]. USA: MS Thesis, Massachusetts Institute of Technology, 2004
    [59] Welsh S J, Subbarao K. Adaptive Synchronization and Control of Free Flying Robots for Capture of Dynamic Free-Floating Spacecrafts[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, 16-19 August 2004
    [60]韦娟,袁建平.编队飞行小卫星相对姿态控制研究[J].航天控制, 2002, (4): 16-20
    [61]苏罗鹏,李俊峰,高云峰.卫星编队飞行相对姿态控制[J].清华大学学报(自然科学版), 2003, 43(5): 683-685
    [62]程杨.基于星敏感器的空间飞行器姿态和姿态角速度确定[D].哈尔滨工业大学博士学位论文, 2003
    [63]肖业伦,陈万春.飞行器相对姿态运动的静力学、运动学和动力学方法[J].中国空间科学技术, 2003, 23(5): 10-15
    [64] Bornschlegl E, Guettier C, Poncet J C. Automatic Planning for Autonomous Spacecrafts Constellation [ED/OL]. http://www.axlog.fr/R_d/documents/planning.ps, 1999
    [65] Zelinski S, Koo T J, Sastry S. Optimization-based Formation Reconfiguration Planning for Autonomous Vehicles [C]. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan, September 14-19, 2003: 3758-3763
    [66]李新刚.空间交会对接制导策略与仿真研究[D].西安:西北工业大学硕士学位论文, 2000
    [67] McInnes C R Autonomous Path Planning for On-Orbit Servicing Vehicles [J]. Journal of the British Interplanetary Society, 2000, 53(1): 26-38
    [68] Roger A B, McInnes C R. Safety Constrained Free-Flyer Path Planning at the International Space Station [J]. Journal of Guidance, Control and Dynamics, 2000, 23(6): 971-979
    [69] Singh G, Hadaegh F Y. Collision Avoidance Guidance for Formation Flying Applications[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, August 6-9, 2001
    [70] Yang G, Yang Q, Kapila V, et al. Fuel Optimal Maneuvers for Multiple Spacecraft Formation Reconfiguration Using Multi-Agent Optimization [C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December 2001: 1083-1088
    [71] Yang J, Qu Z, Wang J. Comparison of Optimal Solutions to Real-Time Path Planning for a Mobile Vehicle [C]. AIAA GN&C Conference and Exhibit, San Francisco, California, August 15-18, 2005
    [72] Atkins E, Pennecot Y. Autonomous Satellite Formation Assembly and Reconfiguration with Gravity Fields [C]. IEEE Aerospace Conference, Big Sky, MT, March 2002
    [73] Pennecot Y, Atkins E, Sanner R. Intelligent Spacecraft Formation Management and Path Planning [C]. AIAA 2002-1072, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 2002
    [74] Sultan C, Seereeram S, Mehra R K. Minimization and Equalization of Energy for Formation Flying Reconfiguration [C]. IEEE International Conference on Robotics &Automation, New Orleans, LA, 2004
    [75] Sultan C, Seereeram S, Mehra R K. Matrix Inequalities and Energy Optimal Reconfiguration for Formation Flying Spacecraft [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004
    [76] Sultan C, Seereeram S, Mehra R K. Energy Optimal Multi-Spacecraft Relative Reconfiguration of Deep Space Formation Flying [C]. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004
    [77] Henshaw C G, Sanner R M. A Variational Technique for Spacecraft Trajectory Planning [C] 2003 GSFC Flight Mechanics Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 2003
    [78] Tillerson M. Coordination and Control of Multiple Spacecraft Using Convex Optimization Techniques [D]. MS Thesis, Massachusetts Institute of Technology, June 2002
    [79] Schouwenaars T, Moor B D, Feron E, et al. Mixed Integer Programming for Multi-Vehicle Path Planning [C]. Proceedings of the European Control Conference, 2001: 2603-2608
    [80] Richards A, How J, Schouwenaars T, et al. Plume Avoidance Maneuver Planning Using Mixed Integer Linear Programming [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, August 2001
    [81] Richards A, Schouwenaars T, How J P, et al. Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming [J]. Journal of Guidance, Control and Dynamics, 2002, 25(4): 755-764
    [82] Sun D, Zhou F, Zhou J. Trajectory Planning and Control for Satellite Formation Flying Maneuver of Leaving and Joining [C]. AIAA 2003-5588, AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August 2003
    [83] Richards A, How J. Performance Evaluation of Rendezvous Using Model Predictive Control [C]. AIAA 2003-5507, AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August 2003
    [84] Breger L, How J P. Safe Trajectory for Autonomous Rendezvous of Spacecraft [C]. AIAA 2007-6860, AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head, South Carolina, August 2007
    [85] Park C, Scheeres D J, Guibout V. Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, August 2005
    [86] Yang I H, Zhao Y J. Real-Time Trajectory Planning for Autonomous Aerospace Vehicles amidst Static Obstacles [C]. AIAA’s 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth, Virginia, May 2002
    [87] Phillips J M, Kavraki L E. Spacecraft Rendezvous and Docking with Real-Time Randomized Optimization [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 2003
    [88] Saivea G, Vasileb M. Probabilistic Optimization applied to Spacecraft Rendezvous on Keplerian Orbits [Z]. Available: http://naca.central.cranfield.ac.uk/dcsss/2004/B02_46_ VasileEDITfinal.pdf, 2004
    [89] Lennon J A, Atkins E M. Optimal Path Planning with Behavior-Based Cost Definition [C]. AIAA 2004-6226, AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, September 2004
    [90] Marsh S M, White B D. Trajectory Design and Navigation Analysis for Cargo Transfer Vehicle Proximity Operations [C]. AIAA-92-4436-CP, AIAA/AAS Astrodynamics Conference, Hilton Head Island, SC, August 1992
    [91] Hablani H B, Tapper M L, Dana-Bashian D J. Guidance and Relative Navigation for Autonomous Rendezvous in a Circular Orbit [J]. Journal of Guidance, Control and Dynamics, 2002, 25(3): 553-562
    [92] Bell R, Morphopoulos T, Pollack J. Hardware-In-The Loop Tests of an Autonomous GNC System for On-Orbit Servicing [C]. AIAA-LA Section/SSTC Responsive Space Conference, Long Beach, California, September 2003
    [93] Matsumoto S, Dubowsky S, Jacobsen S. Fly-by Approach and Guidance for Uncontrolled Rotating Satellite Capture [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August 2003
    [94] Brazzel J P. RPOP Enhancements to Support the Space Shuttle R-Bar Pitch Maneuver for Tile Inspection [C]. AIAA 2005-5984, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, August 2005
    [95] D’Souza C, Hanak F C, Spehar P, et al. Orion Rendezvous, Proximity Operations, and Docking Design and Analysis [C]. AIAA 2007-6683, AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head, South Carolina, August 2007
    [96]王华.交会对接的控制与轨迹安全[D].长沙:国防科技大学博士学位论文, 2007
    [97] Zhang H, Sun L. Spacecraft Formation-Flying in Eccentric Orbits[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August 2003
    [98]张晓敏.航天器相对轨道动力学与控制研究[D].北京:北京航空航天大学博士学位论文, 2000
    [99] Straight S D. Maneuver Design for Fast Satellite Circumnavigation [D]. MS thesis, Astronautical Engineering, Air Force Institute of Technology, AFIT/GA/ENY/04-M05, 2004
    [100]罗建军,杨宇和,袁建平.共面快速受控绕飞轨迹设计与控制[J].宇航学报, 2006, 27(6): 1389-1392
    [101]罗建军,周文勇,袁建平.卫星快速绕飞轨迹设计与制导[J].宇航学报, 2007, 28(3): 628-632
    [102] Kim S C. Mission Design and Trajectory Analysis for Inspection of a Host Spacecraft by a Microsatellite [D]. MS Thesis, Massachusetts Institute of Technology, 2006
    [103] Irvin D J. Optimal Control Strategies for Constrained Relative Orbits [D]. USA: PhD Dissertation, Air Force Institute of Technology, AFIT/DS/ENY/07-03, 2007
    [104]罗亚中.空间最优交会路径规划策略研究[D].长沙:国防科技大学博士学位论文, 2007
    [105]朱仁璋.航天器交会对接技术[M].北京:国防工业出版社, 2007
    [106] Vadali S R., Schaub H, Alfriend K T. Initial Conditions and Fuel Optimal Control Formation Flying of Satellites [C]. AIAA-99-4265, AIAA Guidance, Navigation, and Control Conference, Portland, OR, August 1999
    [107] Vadali S R, Vaddi S. Orbit Establishment for Formation Flying of Satellites [J]. AAS 00-111,Advances in the Astronautical Sciences, 2000, 105(1): 181–194
    [108] Schaub H, Alfriend K T. Impulsive Feedback Control to Establish Mean Orbit Elements of Spacecraft Formations [J]. Journal of Guidance, Control and Dynamics, 2001, 24(4): 739-745
    [109]王兆魁,张育林.分布式卫星群构形初始化控制策略[J].宇航学报, 2004, 25(3): 334-337
    [110] Wiesel W E. Optimal Impulsive Control of Relative Satellite Motion [J]. Journal of Guidance, Control and Dynamics, 2003, 26(1): 74-78
    [111] Vaddi S S, Alfriend K T, Vadali S R. Formation Establishment and Reconfiguration Using Impulsive Control[J]. Journal of Guidance, Control and Dynamics, 2005, 28(2): 262-268
    [112] Ichimura Y, Ichikawa A. Optimal Impulsive Relative Orbit Transfer along a Circular Orbit [J]. Journal of Guidance, Control and Dynamics, 2008, 31(4): 1014-1027
    [113] Vassar R H, Sherwood R B. Formation Keeping for a Pair of Satellite in a Circular Orbit [J]. Journal of Guidance, Control and Dynamics, 1985, 8(2): 235-242
    [114] Redding D C, Adams N J. Linear-Quadratic Stationkeeping for the STS Orbiter [J]. Journal of Guidance, Control and Dynamics, 1989, 12(2): 248-255
    [115] Ulybyshev Y. Long-Term Formation Keeping of Satellite Constellation Using Linear Quadratic Controller [J]. Journal of Guidance, Control and Dynamics, 1998, 21(1): 109-115
    [116] Breger L S. Model Predictive Control for Formation Flying Spacecraft [D]. MS Thesis, Massachusetts Institute of Technology, June 2004
    [117]曹喜滨,贺东雷.编队构形保持模型预测控制方法研究[J].宇航学报, 2008, 29(4): 1276~1283
    [118] Schaub H, Vadali S R, Junkins J L, et al. Spacecraft Formation Flying Control Using Mean Orbit Elements [J]. Journal of Astronautical Sciences, 2000, 48(1): 69-87
    [119] Schaub H, Alfriend K T. Hybrid Cartesian and Orbit Element Feedback Law for Formation Flying Spacecraft [J]. Journal of Guidance, Control and Dynamics, 2002, 25(2): 387-393
    [120] Naasz B J. Classical Element Feedback Control for Spacecraft Orbital Maneuvers [D]. MS thesis, Virginia Polytechnic Institute and State University, May 2002
    [121] de Queiroz M S, Kapila V, Yan Q. Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying [J]. Journal of Guidance, Control and Dynamics, 2000, 23(3): 385-390
    [122] Yeh H, Nelson E, Sparks A. Nonlinear Tracking Control for Satellite Formations [J]. Journal of Guidance, Control and Dynamics, 2002, 25(2): 376-386
    [123] Nelson E, Sparks A, Kang W. Coordinated Nonlinear Tracking Control for Satellite Formations [C]. AIAA-2001-4025, AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, August 2001
    [124] Massey T, Shtessel Y. Satellite Formation Control Using Traditional and High Order Sliding Modes [C]. AIAA 2004-5021, AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, August 2004
    [125]王颖,吴宏鑫.基于椭圆轨道的空间交会停靠全系数自适应控制方法研究[J].宇航学报, 2001, 22(5): 15-19
    [126]王石,戴金海.相对运动小推力的模糊控制[J].计算机仿真, 2002, 19(6): 25-27
    [127]魏伟,康伟.在地球扁率摄动下的卫星编队飞行控制[J].飞行力学, 2004, 22(1): 83-87
    [128] Zanon D J, Campbell M E. Optimal Planner for Spacecraft Formations in Elliptical Orbits [J]. Journal of Guidance, Control and Dynamics, 2006, 29(1): 161-171
    [129] Schaub H. Relative Orbit Geometry through Classical Orbit Element Differences [J].Journal of Guidance, Control and Dynamics, 2004, 27(5): 839-848
    [130] Tong C, Shijie X, Songxia W. Relative Motion Control for Autonomous Rendezvous Based on Classical Orbit Element Differences [J]. Journal of Guidance, Control and Dynamics, 2007, 30(4): 1003-1014
    [131] Sengupta P, Vadali S R. Relative Motion and the Geometry of Formations in Keplerian Elliptic Orbits [J]. Journal of Guidance, Control and Dynamics, 2007, 30(4): 953-964
    [132]朱彦伟.空间作战飞行器作战模型研究与仿真实现[D].长沙:国防科技大学硕士学位论文, 2004
    [133] Lovell T A, Tragesser S G. Guidance for Relative Motion of Low Earth Orbit Spacecraft based on Relative Orbit Elements [C]. AIAA 2004-4988, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, 16-19 August 2004
    [134]飞思科技产品研发中心. MATLAB 6.5辅助优化计算与设计[M].北京:电子工业出版社, 2003
    [135] Schaub H, Alfriend K T. J2 Invariant Relative Orbits for Spacecraft Formations [J]. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2): 77-95
    [136]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000
    [137] Brouwer D. Solution of the Problem of Artificial Satellite Theory without Drag [J]. The Astronomical Journal, 1959, 64(1274): 378-397
    [138]雷勇.航天器交会对接制导方法研究[D].长沙:国防科技大学硕士学位论文, 2000
    [139] Yamanaka K, Andersen F. New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit [J]. Journal of Guidance, Control and Dynamics, 2002, 25(1): 60-66
    [140] Bryson A E, Ho Y C. Applied Optimal Control [M]. Hemisphere Publishing Company, 1975
    [141] D’Souza C N. An Optimal Guidance Law for Formation Flying and Stationkeeping [C]. AIAA 2002-4960, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002
    [142]郑大钟.线性系统理论[M].北京:清华大学出版社, 1990
    [143]钟海秋.现代控制理论[M].北京:高等教育出版社, 2004: 69-73
    [144] Schouwenaars T. Safe Trajectory Planning of Autonomous Vehicles [D]. USA: PhD Dissertation, Massachusetts Institute of Technology, 2006
    [145] Campbell M E. Planning Algorithm for Multiple Satellite Clusters. Journal of Guidance, Control and Dynamics, 2003, 26(5): 770-780
    [146]符曦.系统最优化及控制[M].北京:机械工业出版社, 2004: 233-236
    [147]张洪钺,王青.最优控制理论与应用[M].北京:高等教育出版社, 2006: 39-52
    [148]刑继祥,张春蕊,徐洪泽.最优控制应用基础[M].北京:科学出版社, 2003: 67-71
    [149]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1996
    [150]许超,陈治刚,邵惠鹤.预测控制技术及应用发展综述[J].化工自动化及仪表, 2002, 29(3): 1-10
    [151]武俊峰,王振英.模型预测控制的新发展[J].自动化技术与应用, 2004, 23(12): 1-4
    [152] Richards A G. Robust Constrained Model Predictive Control [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2005
    [153] Kerrigan E C. Robust Constraint Satisfaction: Invariant Sets and Predictive Control [D]. Cambridge, UK: University of Cambridge, 2000
    [154] Tillerson M, Inalhan G, How J P. Coordination and Control of Distributed Spacecraft Systems Using Convex Optimization Techniques [J]. International Journal of Robust and Nonlinear Control, 2002, 12(2): 207-242
    [155] Richards A, How J P. Model Predictive Control of Vehicle Maneuvers with Guaranteed Completion Time and Robust Feasibility [C]. Proceedings of the American Control Conference, Denver, Colorado, June 4-6, 2003
    [156] Thomas S J, Mueller J B, Paluszek M A. Formations for Close-Orbiting Escort Vehicles [C]. AIAA 2004-6289, AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, 20-22 Sep 2004
    [157] Pongvthithum R, Veres S M, Gabriel S B, Rogers E. Universal Adaptive Control of Satellite Formation Flying [J]. International Journal of Control, 2005, 78(1): 45-52
    [158] Toglia C, Palmerini G B, Gasbarri P. Basic Aspects in Designing Grasper Mission[C]. IAC-07-IAF-D1.1.07, 58th International Astronautical Congress, Hyderabad, India, 24-28 September 2007
    [159] Yoshida K, Dimitrov D, Nakanishi H. On the Capture of Tumbling Satellite by a Space Robot [C]. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 9-15, 2006: 4127-4132
    [160] Matsumoto S, Ohkami Y, et al. Satellite Capturing Strategy Using Agile Orbital Servicing Vehicle, Hyper-OSV[C]. 2002 IEEE International Conference on Robotics & Automation, Washington DC, May 2002
    [161] Matsumoto S, Jacobsen S, Dubowsky S, Ohkami Y. Approach Planning and Guidance for Uncontrolled Rotating Satellite Capture Considering Collision Avoidance[C]. Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS 2003, NARA, Japan, May 19-23, 2003
    [162]李晨光,肖业伦.多脉冲C-W交会的优化方法[J].宇航学报, 2006, 27(2): 172-186
    [163]孙世贤,黄圳圭.理论力学教程[M].长沙:国防科技大学出版社, 1997: 118-119
    [164]朱仁璋,汤溢,尹艳.空间交会最终平移轨迹安全模式设计[J].宇航学报, 2004, 25(4): 443-448