组织特异沉默BMP4基因转基因小鼠模型的构建及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角蛋白是一个多基因家族,不同的角蛋白表达呈现表达的组织和时空特异性。因此,利用不同的角蛋白启动子可以实现外源基因在特定组织和特定发育时期的表达。为了探讨某一基因在皮肤和毛囊生长发育及在疾病发生中的作用机制,常选择角蛋白启动子实现外源基因在皮肤和毛囊组织里特异表达。
     为制备在皮肤和毛囊组织里特异表达外源基因的转基因动物,首先需要选择组织特异表达的启动子。为此,本实验从人血中提取基因组,克隆得到在皮肤和毛囊组织中特异表达的人K14和K5启动子。瞬时转染体外培养不同类型的细胞,利用萤光素酶检测系统,分析这两个启动子的启动活性及组织特异性。结果表明,两个启动子在选择的细胞系中都有表达,但以小鼠皮肤来源的细胞系里的活性最强。其中K14启动子在小鼠皮肤细胞系中活性远高于其它细胞系(P<0.01),K5启动子的活性也比较高(P<0.05)。为充分利用角蛋白启动子,明确其表达特点,使之更好地应用于外源基因的定位表达提供一定的参考依据。
     RNAi (RNA interference, RNAi)是继基因打靶技术后的一种高效的研究基因功能的方法。细胞学实验和小鼠模型的研究结果表明,PolⅡ型启动子可以实现组织特异的RNA干扰,从而为鉴定基因在特定组织中的功能及作用机理提供了一个强有力的研究方法。为了能将这种方法用于转基因绵羊生产,探讨基因与绵羊毛囊发育的关系及其作用机制等,本研究利用PolⅡ型CMV启动子和毛囊组织特异表达的人角蛋白14(K14)的启动子驱动EGFP-shRNA融合转录本的生成,从而实现敲低目的基因的表达。体外基因表达沉默效率分析(pEGFP-Cl-shRNA和psiCHECK-BMP4双质粒共转染Hela细胞)结果表明,6个干扰序列均能有效地抑制BMP4基因的表达,抑制效率达到60%以上;体内表达沉默分析(只转染pEGFP-K14-shRNA质粒转染小鼠皮肤细胞系JB6-C41)的实验结果与体外分析结果相似,除3#序列外,其余干扰序列对BMP4基因的抑制效率都在60%以上,其中5#序列的效率达到80%以上。siRNA诱导的目标基因沉默中mRNA和蛋白水平的下降显著正相关。结果表明,设计构建的由PolⅡ型启动子K14驱动EGFP-shRNA融合转录本的形成,从而实现RNAi的研究方法是可行的,利用这种方法可以实现在特定细胞中敲低目的基因的表达水平。为在大家畜特别是绵羊中应用RNAi的方法分析目的基因在毛囊发育、对不同类型毛囊生长发育的诱导和调节等作用机理的研究提供一个参考方法。
     RNAi是一种行之有效的基因沉默的新方法,越来越广泛地应用于基因功能的研究、疾病的治疗以及新型疫苗的研制等领域。本研究通过原核显微注射干扰载体的方法制备转基因小鼠。选用皮肤组织特异表达的人源角蛋白14(K14)基因启动子(2000bp)作为表达载体启动子,成功地驱动融合表达载体EGFP-shRNA进行干扰片段前体的转录,进而生成成熟的干扰片段,靶向小鼠BMP4基因使其发生沉默。所得到的转基因小鼠及其杂交后代经PCR和Southern杂交鉴定,结果表明外源基因准确无误地整合到小鼠基因组。Northern杂交结果证明小干扰RNA在皮肤组织中有较高水平的表达,在肺和肠组织中有较低水平的表达。研究结果表明:利用PolⅡ型(K14)启动子驱动shRNA融合转录本的表达,在特定组织高表达siRNA,从而达到抑制特定组织目的基因表达的技术路线是可行的。在取E18.5的转基因小鼠皮肤组织做组织切片并用BMP4抗体杂交后发现,阳性小鼠表达BMP4小干扰RNA的皮肤局部出现毛囊增多的现象,初步确定该基因受到抑制后,毛囊在胚胎期的发生被激活,从而产生更多的毛囊。
     我们的研究结果表明,利用polⅡ型启动子K14融合表达mRNA的方法实现体内小干扰RNA的表达是可行的,为利用K14启动子进行毛囊相关基因干扰研究积累了基础数据,也为制备组织特异抑制基因表达的转基因大家畜提供了一个参考方法。
Keratin promoter 5, and 14 are the best available promoter for expression genes in specific tissue. This review summarized the expression characteristics of these promoters and application in transgenic animal models.In this paper, the activities of promoter K14 and K5 were analyzed by luciferase reporter in different cell lines. The results showed that two promoters were both express in all cell lines, but the activity was the highest in skin cell lines. The activity of K14 promoter in skin cell line was higher than others cell lines(P<0.01), and K5 promoter is same too.
     Keratins are a family of cytoskeleton component proteins of epithelial cells. Because keratin generally are expressed in a differentiation-specific and spatiotemporal manner, so keratin promoter regions have proven invaluable for targeting transgene expression to specific compartments within epithelia.
     RNA interference is an efficient method for exploring gene function. Accumulating evidence suggests that RNA PolⅡpromoters can direct cell- or tissue-specific gene silencing. A GFP-shRNA fusion construct transcribed from an RNA PolⅡpromoter (K14 promoter) was used to induce gene-specific shRNA silencing of BMP4 gene expression. Recombinant vectors (pEGFP-Cl-shRNA, psiCHECK-BMP4 and pEGFP-K14-shRNA) were constructed. Vectors pEGFP-Cl-shRNA and psiCHECK-BMP4 were cotransfected into Hela cells (in vitro) and shRNA-induced inhibition efficiency was tested by a luciferase assay. The results showed that six interference sequences all inhibited the expression of BMP4 with high efficiency (>60%), with interference sequence 5# showing the highest efficiency. For in vivo screening of JB6-C41 cells transfected with vector pEGFP-K14-shRNA, the inhibition efficiency was assayed by quantitative RT-PCR and western blotting. The results showed that the mRNA and protein products of the exogenous BMP4 gene were efficiently and specifically inhibited. The efficiency of gene silencing was greater than 60%, except for sequence 3#. The declines in mRNA and protein expression levels were significantly correlated during gene silence by the shRNA. This system may be adapted for in vivo shRNA expression and gene silencing. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression in the analysis of the mechanisms of hair follicle development in sheep.
     Small interfering RNAs are short, double-stranded RNA molecules that can target mRNAs with complementary sequences for degradation. As a method for silencing of gene expression, RNAi is more simple and convenient compared with gene targeting. RNAi has been applied universally in research on gene function, treatment of disease and vaccine production. Accumulating evidence suggests that the Pol II promoter can be applied to RNAi. In this research, the human keratin 14 (K14) gene promoter was used to drive eGFP-shRNA fusion expression in order to interfere with BMP4 expression in skin. Transgenic mice were produced by the method of pronuclear microinjection and identified by PCR screening and Southern blotting. PCR and Southern blotting experiments showed that the foreign gene was integrated in the genome of the transgenic mice. Northern blotting detected siRNA expression in lungs, intestines and skin, with highest siRNA expression level found in skin. Our results demonstrate that in vivo siRNA expression driven by PolⅡpromoter fusion constructs is feasible. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression for the analysis of gene function in skin and also for skin appendage development in livestock. In addition, it provides further data advancing progress of the use of polⅡpromoters in combination with RNAi.
     Our results demonstrate that the fusion construct transcribed from an PolⅡpromoter to induce gene-specific RNAi was feasible.
引文
1. 刘守仁.羊毛与羊毛品质.新疆科技卫生出版社,1996.
    2. Jimbow K. Biological role of tyrosinase-related protein and its relevance to pigmentary disorders (vitiligo vulgaris). J Dermatol.1999,26(11):734-737.
    3. Greco V, Chen T, Rendl M, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell.2009,4(2):155-169.
    4. Fuchs E, Nowak JA. Building epithelial tissues from skin stem cells. Cold Spring Harb Symp Quant Biol.2008,73:333-350.
    5. Nishikawa SI, Osawa M, Yonetani S, Torikai-Nishikawa S, Freter R. Niche required for inducing quiescent stem cells. Cold Spring Harb Symp Quant Biol.2008,73:67-71.
    6. Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev.2008,22(4):543-557.
    7. Stark J, Andl T, Millar SE. Hairy math:insights into hair-follicle spacing and orientation. Cell.2007, 128(1):17-20.
    8. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol.2002, 118(2):216-225.
    9. Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R, Scheidereit C. NF-kappaB transmits Eda Al/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development.2006,133(6):1045-1057.
    10. Shao Y, Ni Z, Li Y. Wnt signal transduction pathways and hair follicle stem cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2010,27(4):945-948.
    11. Shimizu H, Morgan BA. Wnt signaling through the beta-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J Invest Dermatol.2004, 122(2):239-245.
    12. St-Jacques B, Dassule HR, Karavanova I, et al. Sonic hedgehog signaling is essential for hair development. Curr Biol.1998,8(19):1058-1068.
    13. Chu EY, Hens J, Andl T, et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development.2004,131(19):4819-4829.
    14. De Langhe SP, Sala FG, Del Moral PM, et al. Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol.2005, 277(2):316-331.
    15. Reddy ST, Andl T, Lu MM, Morrisey EE, Millar SE. Expression of Frizzled genes in developing and postnatal hair follicles. J Invest Dermatol.2004,123(2):275-282.
    16. Kawakami Y, Wada N, Nishimatsu S, Nohno T. Involvement of frizzled-10 in Wnt-7a signaling during chick limb development. Dev Growth Differ.2000,42(6):561-569.
    17. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development.1999,126(20):4557-4568.
    18. Monaghan AP, Kioschis P, Wu W, et al. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech Dev.1999,87(1-2):45-56.
    19. Huang Y, Xiong W, Liu G, Zhang B, Xu G, Yang H. Construction of human Wnt-5a sense gene and RNAi eukaryotic expression vector. Pulm Pharmacol Ther.2009,22(6):511-515.
    20. Kawano M, Komi-Kuramochi A, Asada M, et al. Comprehensive analysis of FGF and FGFR expression in skin:FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J Invest Dermatol.2005,124(5):877-885.
    21. du Cros DL. Fibroblast growth factor and epidermal growth factor in hair development. J Invest Dermatol.1993,101(1 Suppl):106S-113S.
    22. Petiot A, Conti FJ, Grose R, Revest JM, Hodivala-Dilke KM, Dickson C. A crucial role for Fgfr2-Ⅲb signalling in epidermal development and hair follicle patterning. Development.2003, 130(22):5493-5501.
    23. Ting-Xin Jiang Y-HL, Randall B Widelitz, Ramendra K Kundu, Robert E Maxson and C M Chuong. Epidermal Dysplasia and Abnormal Hair Follicles in Transgenic Mice Overexpressing Homeobox Gene MSX-2. Journal of Investigative Dermatology.1999,113:230-237.
    24. Owens P, Han G, Li AG, Wang XJ. The role of Smads in skin development. J Invest Dermatol.2008, 128(4):783-790.
    25. Yang L, Mao C, Teng Y, et al. Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res.2005,65(19):8671-8678.
    26. Tsuji H, Ishida-Yamamoto A, Takahashi H, Iizuka H. Nuclear localization of beta-catenin in the hair matrix cells and differentiated keratinocytes. J Dermatol Sci.2001,27(3):170-177.
    27. Peus D, Pittelkow MR. Growth factors in hair organ development and the hair growth cycle. Dermatol Clin.1996,14(4):559-572.
    28. Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation.2004,72(9-10):512-526.
    29. Thomson M, McCarroll J, Bond J, Gordon-Thomson C, E DW, Moore GP. Parathyroid hormone-related peptide modulates signal pathways in skin and hair follicle cells. Exp Dermatol.2003, 12(4):389-395.
    30. Kamp H, Geilen CC, Sommer C, Blume-Peytavi U. Regulation of PDGF and PDGF receptor in cultured dermal papilla cells and follicular keratinocytes of the human hair follicle. Exp Dermatol.2003, 12(5):662-672.
    31. Ellis T, Smyth I, Riley E, et al. Overexpression of Sonic Hedgehog suppresses embryonic hair follicle morphogenesis. Dev Biol.2003,263(2):203-215.
    32. Jindo T, Tsuboi R, Imai R, Takamori K, Rubin JS, Ogawa H. Hepatocyte growth factor/scatter factor stimulates hair growth of mouse vibrissae in organ culture. J Invest Dermatol.1994,103(3):306-309.
    33. Fuchs E, Merrill BJ, Jamora C, DasGupta R. At the roots of a never-ending cycle. Dev Cell.2001, 1(1):13-25.
    34. Rufaut NW, Pearson AJ, Nixon AJ, Wheeler TT, Wilkins RJ. Identification of differentially expressed genes during a wool follicle growth cycle induced by prolactin. J Invest Dermatol.1999, 113(6):865-872.
    35. Fu XB, Sun TZ, Yang YH. The expression characteristics and their biological significance of epidermal growth factor and basic fibroblast growth factor in rat skins at different development stages. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2001,15(6):321-324.
    36. Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc.2003,8(1):46-55.
    37 Jean M. H., Thomas R., Jiirgen G., et al. FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous mutations. Cell,78:1017-1025.
    38. Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development.2007,134(6):1221-1230.
    39. Nicole Wager and Thomas Schlake. IGF-1 signalling controls the hair growth cycle and the differentiation of hair shafts. J Invest Dermatol,2005,125:873-882.
    40. Panaretto BA. Gene expression of potential morphogens during hair follicle and tooth formation:a review. Reprod Fertil Dev.1993,5(4):345-360.
    41. Baron M. An overview of the Notch signaling pathway. Seminars in cell & development biology. 2003,14(2):113-119.
    42. Kumano K, Masuda S, Sata M, et al. Both Notchl and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res.2008,21(1):70-78.
    43. Uyttendaele H, Panteleyev AA, de Berker D, Tobin DT, Christiano AM. Activation of Notchl in the hair follicle leads to cell-fate switch and Mohawk alopecia. Differentiation.2004,72(8):396-409.
    44. Morre G.P., Jackson N., Isaacs K., et al. Pattern and morphogenesis in skin. J Theor. Biol. 1998,191(1):87-94.
    45. Powell BC, Rogers GE. The role of keratin proteins and their genes in the growth, structure and properties of hair. Exs.1997,78:59-148.
    46. Powell BC, Nesci A, Rogers GE. Regulation of keratin gene expression in hair follicle differentiation. Ann N Y Acad Sci.1991,642:1-20.
    47. Powell BC, Beltrame JS. Characterization of a hair (wool) keratin intermediate filament gene domain. J Invest Dermatol.1994,102(2):171-177.
    48. Powell BC, Cam GR, Fietz MJ, Rogers GE. Clustered arrangement of keratin intermediate filament genes. Proc Natl Acad Sci U S A.1986,83(14):5048-5052.
    49. Rogers MA, Langbein L, Praetzel S, et al. Sequences and differential expression of three novel human type-Ⅱ hair keratins. Differentiation.1997,61(3):187-194.
    50. Cribier B, Peltre B, Grosshans E, Langbein L, Schweizer J. On the regulation of hair keratin expression: lessons from studies in pilomatricomas. J Invest Dermatol.2004,122(5):1078-1083.
    51. Jurgen Schweizer LL, Michael A. Rogers, Hermelita Winter. Hair follicle-specific keratins and their diseases. Exp Cell Res.2007,313(10):2010-2020.
    52. Thomas M. Magin MHaRS. Novel insights into intermediate-filament function from studies of transgenic and knockout mice Protoplasma.2000,211:140-150.
    53. Whitbread LA, Powell BC. Expression of the intermediate filament keratin gene, K15, in the basal cell layers of epithelia and the hair follicle. Exp Cell Res.1998,244(2):448-459.
    54. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med.1993,328(10):673-679.
    55. Rogers MA, Langbein L, Winter H, Ehmann C, Praetzel S, Schweizer J. Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. J Biol Chem.2002,277(50):48993-49002.
    56. Rogers MA, Langbein L, Winter H, et al. Characterization of a cluster of human high/ultrahigh sulfur keratin-associated protein genes embedded in the type I keratin gene domain on chromosome 17q 12-21. J Biol Chem.2001,276(22):19440-19451.
    57. McLaren RJ, Rogers GR, Davies KP, Maddox JF, Montgomery GW. Linkage mapping of wool keratin and keratin-associated protein genes in sheep. Mamm Genome.1997,8(12):938-940.
    58. Fratini A, Powell BC, Rogers GE. Sequence, expression, and evolutionary conservation of a gene encoding a glycine/tyrosine-rich keratin-associated protein of hair. J Biol Chem.1993, 268(6):4511-4518.
    59. Mitsui S, Ohuchi A, Adachi-Yamada T, Hotta M, Tsuboi R, Ogawa H. Structure and hair follicle-specific expression of genes encoding the rat high sulfur protein B2 family. Gene.1998, 208(2):123-129.
    60. Rogers MA, Winter H, Langbein L, Krieg T, Schweizer J. Genomic characterization of the human type I cuticular hair keratin hHa2 and identification of an adjacent novel type Ⅰ hair keratin gene hHa5. J Invest Dermatol.1996,107(4):633-638.
    61. Brendan J.J., and Barry C.P., Differential expression of genes encoding a cysteinerich keratin family in the hair cuticle. J Invest Dermatol.1994,103:310-317
    62. MacKinnon PJ, Powell BC, Rogers GE. Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. J Cell Biol.1990,111(6 Pt 1):2587-2600.
    63. Jenkins N, Saam JR, Mango SE. CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science.2006,313(5791):1298-1301.
    64. Fratini A, Powell BC, Hynd PI, Keough RA, Rogers GE. Dietary cysteine regulates the levels of mRNAs encoding a family of cysteine-rich proteins of wool. J Invest Dermatol.1994,102(2):178-185.
    65. Powell BC, Walker SK, Bawden CS, Sivaprasad AV, Rogers GE. Transgenic sheep and wool growth: possibilities and current status. Reprod Fertil Dev.1994,6(5):615-623.
    66. Fuchs E, Byrne C. The epidermis:rising to the surface. Curr Opin Genet Dev.1994,4(5):725-736.
    67. Powell B, Crocker L, Rogers G. Hair follicle differentiation:expression, structure and evolutionary conservation of the hair type Ⅱ keratin intermediate filament gene family. Development.1992, 114(2):417-433.
    68. Fuchs E. Genetic skin disorders of keratin. J Invest Dermatol.1992,99(6):671-674.
    69. Rogers GR, Hickford JG, Bickerstaffe R. MspI RFLP in the gene for a type I intermediate filament wool keratin. Anim Genet.1993,24(3):218.
    70. Zhou J, Liao M, Hatta T, Tanaka M, Xuan X, Fujisaki K. Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition. Gene.2006,372:191-198.
    71. Raphael Kopan GT, and Elaine Fuchs. Retinoids as Important Regulators of Terminal Differentiation: Examining Keratin Expression in Individual Epidermal Cells at Various Stages of Keratinization. The Journal of Cell Biology.1987,105:427-440.
    72. Zhou P, Byrne C, Jacobs J, Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev.1995,9(6):700-713.
    73. Carolyn Byrne M. Programming gene expression in developing epidermis. Development.1994, 120:2369-2383.
    74. Fuchs E.. The cDNA sequence of a human epidermal keratin:Divergence of sequence but conservation of structure among intermediate filament proteins Cell.1982,31(1):243-252.
    75. Fuchs E. Evolution and complexity of the genes encoding the keratins of human epidermal cells. J Invest Dermatol.1983,81(1 Suppl):141s-144s.
    76. DO.UGLAS MARCHUK SM, AND ELAINE FUCHS. Complete sequence of a gene encoding a human type I keratin:Sequences homologous to enhancer elements in the regulatory region of the gene. Proc.Nati.Acad.Sci.1985,82:1609-1613.
    77. Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci U S A.1989, 86(5):1563-1567.
    78. William R. Staggers AJPaJEK. Sequence of the functional human keratin K14 promoter. Gene.1995, 153(1995):297-298.
    79. Vassar R, Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev.1991,5(5):714-727.
    80. Turksen K, Troy TC. Overexpression of the calcium sensing receptor accelerates epidermal differentiation and permeability barrier formation in vivo. Mech Dev.2003,120(6):733-744.
    81. Davis BM, Lewin GR, Mendell LM, Jones ME, Albers KM. Altered expression of nerve growth factor in the skin of transgenic mice leads to changes in response to mechanical stimuli. Neuroscience.1993, 56(4):789-792.
    82. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell.2009,5(3):279-289.
    83. Komuves LG, Michael E, Arbeit JM, et al. HOXB4 homeodomain protein is expressed in developing epidermis and skin disorders and modulates keratinocyte proliferation. Dev Dyn.2002,224(1):58-68.
    84. Coussens M, Davy P, Brown L, et al. RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1 alpha as critical for telomerase function in murine embryonic stem cells. Proc Natl Acad Sci U S A.107(31):13842-13847.
    85. Davis BM, Wang HS, Albers KM, Carlson SL, Goodness TP, McKinnon D. Effects of NGF overexpression on anatomical and physiological properties of sympathetic postganglionic neurons. Brain Res.1996,724(1):47-54.
    86. Shibuya M. Unique signal transduction of the VEGF family members VEGF-A and VEGF-E. Biochem Soc Trans.2009,37(Pt 6):1161-1166.
    87. Huang H, Song TJ, Li X, et al. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A.2009,106(31):12670-12675.
    88. Ghahary A, Tredget EE, Chang LJ, Scott PG, Shen Q. Genetically modified dermal keratinocytes express high levels of transforming growth factor-beta1. J Invest Dermatol.1998,110(5):800-805.
    89. Ghyselinck NB, Chapellier B, Calleja C, et al. [Genetic dissection of retinoic acid function in epidermis physiology]. Ann Dermatol Venereol.2002,129(5 Pt 2):793-799.
    90. Morrell NT, Leucht P, Zhao L, et al. Liposomal packaging generates Wnt protein with in vivo biological activity. PLoS One.2008,3(8):e2930.
    91. Vanover JC, Spry ML, Hamilton L, Wakamatsu K, Ito S, D'Orazio JA. Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino mice. Pigment Cell Melanoma Res.2009,22(6):827-838.
    92. Suzuki K, Yamaguchi Y, Villacorte M, et al. Embryonic hair follicle fate change by augmented beta-catenin through Shh and Bmp signaling. Development.2009,136(3):367-372.
    93. Samuel MS, Munro J, Bryson S, Forrow S, Stevenson D, Olson MF. Tissue selective expression of conditionally-regulated ROCK by gene targeting to a defined locus. Genesis.2009,47(7):440-446.
    94. Angela L., Tyner M., Fuchs E. The sequence of a type Ⅱ keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes. Proc.Nati.Acad.Sci.1985, 82:4683-4687.
    95. J M Carroll KMA, J A Garlick, R Harrington, and L B Taichman. Tissue-and stratum-specific expression of the human involucrin promoter in transgenic mice. PNAS.1993,90(21):10270-10274.
    96. Jorgensen RA, Atkinson RG, Forster RL, Lucas WJ. An RNA-based information superhighway in plants. Science.1998,279(5356):1486-1487.
    97. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998,391(6669):806-811.
    98. Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell.2004,117(1):1-3.
    99. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev.1999,13(24):3191-3197.
    100. Bernstein E, Denli AM, Hannon GJ. The rest is silence. Rna.2001,7(11):1509-1521.
    101 Hamilton, A.J. and Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science,1999,286:950-952.
    102. Yoshinari K, Miyagishi M, Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res.2004,32(2):691-699.
    103. Tijsterman M, Okihara KL, Thijssen K, Plasterk RH. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr Biol.2002,12(17):1535-1540.
    104. Tomari Y, Du T, Haley B, et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell. 2004,116(6):831-841.
    105. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell.2004,15(2):185-197.
    106. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell.2005,123(4):607-620.
    107. Pham,J.W., Pellino,J.L., Lee,Y.S., et al. A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell,2004,117:83-94.
    108. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell.2001,107(3):297-307.
    109. Kennerdell,J. R., Yamaguchi,S., and Carthew, R.W. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes development,2002,16:1884-1889
    110. Gu, S., and Rossi, J.J. Uncoupling of RNAi from active translation in mammalian cells. RNA, 2005,11:38-44
    111. Parker, R., and Song, H. The enzymes and control of eukaryotic mRNA turnover. Nature structural Molecular Biology.2004,11:121-127
    112. Guo HS, Fei JF, Xie Q, Chua NH. A chemical-regulated inducible RNAi system in plants. Plant J.2003, 34(3):383-392.
    113. Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev.2003,13(2):83-105.
    114. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A.2001, 98(17):9742-9747.
    115. Tabara H, Yigit E, Siomi H, Mello CC. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell.2002,109(7):861-871.
    116. Holen T, Amarzguioui M, Babaie E, Prydz H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res.2003, 31(9):2401-2407.
    117. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003,301(5639):1545-1547.
    118. Sago N, Omi K, Tamura Y, et al. RNAi induction and activation in mammalian muscle cells where Dicer and eIF2C translation initiation factors are barely expressed. Biochem Biophys Res Commun. 2004,319(1):50-57.
    119. Miyagishi M, Taira K. RNAi expression vectors in mammalian cells. Methods Mol Biol.2004, 252:483-491.
    120. Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A.2002,99(8):5515-5520.
    121. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet.2003,34(3):263-264.
    122. Djupedal Ⅰ, Portoso M, Spahr H, et al. RNA Pol Ⅱ subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev.2005,19(19):2301-2306.
    123. Ling X, Li F. Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques.2004,36(3):450-454,456-460.
    124. Samarsky D. RNAi:From Biology to Therapeutics--Second Annual Conference.30 January-1 February 2005, Berlin, Germany. IDrugs.2005,8(3):219-221.
    125. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol.2002,20(10):1006-1010.
    126. Goolsby KM, Shapiro DJ. RNAi-mediated depletion of the 15 KH domain protein, vigilin, induces death of dividing and non-dividing human cells but does not initially inhibit protein synthesis. Nucleic Acids Res.2003,31(19):5644-5653.
    127 Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B. Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Research,2003,31:5033-5038.
    128 Tiscornia G, Tergaonkar V, Galimi F, Verma IM. CRE recombinase-inducible RNA interference mediated by lentiviral vectors. PNAS,2004,101:7347-7351
    129 Ventura A, Meissner A, Dillon CP, et al. Cre-lox-regulated conditional RNA interference from transgenes. PNAS,2004,101:10380-10385.
    130 Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002,297:2056-2060.
    131 Zhou H, Xia XG, Xu Z. An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Research,2005, 33:e62.
    132 Rao MK, Pham J, Imam JS, et al. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Development,2006,20:147-152.
    133 Ling X, Li FZ. Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques,2004,36(3):450-458.
    134 Yuan J, Wang XB, Zhang Y, et al. shRNA transcribed by RNA Pol II promoter induce RNA interference in mammalian cell. Molecular Biological Reports,2006,33:43-49
    135. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell.2002,110(5):563-574.
    136. Ito M, Kawano K, Miyagishi M, Taira K. Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett.2005,579(26):5988-5995.
    137. Aravin AA, Lagos-Quintana M, Yalcin A, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell.2003,5(2):337-350.
    138. Scherr M, Eder M. RNAi in functional genomics. Curr Opin Mol Ther.2004,6(2):129-135.
    139. Mousses S, Caplen NJ, Cornelison R, et al. RNAi microarray analysis in cultured mammalian cells. Genome Res.2003,13(10):2341-2347.
    140. John M, Geick A, Hadwiger P, Vornlocher HP, Heidenreich O. Gene silencing by RNAi in mammalian cells. Curr Protoc Mol Biol.2003, Chapter 26:Unit 26 22.
    141. Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K. Enzymatic production of RNAi libraries from cDNAs. Nat Genet.2004,36(2):190-196.
    142. Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle.2003,2(1):22-24.
    143. Caplen NJ. RNAi as a gene therapy approach. Expert Opin Biol Ther.2003,3(4):575-586.
    144 Elbashir, S.M., Harborth,J., Lendeckel, W., et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411:494-498
    145 Sharp, P.A. RNA interference-2001. Genes & Development,2001,15:485-490
    146 甘尚权.绵羊骨骼肌miRNA克隆、表达分析及影响肌肉发育表型的miRNA靶基因的验证.石河子大学;2009.
    147 周长发,张锐,张晓,罗淑萍,郭三堆.地高辛随机引物法标记探针的Southern杂交技术优化.中国农业科技导报.2009,11(4):123-128.
    148. Chen CH, Sakai Y, Demay MB. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology.2001, 142(12):5386-5389.
    149. Masahito T.S., Masaru O., Masahito I., Tadashi T., Kunihiko Y.T., Taked JJ. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc.Natl.Acad.Sci.1997,94:7400-7405.
    150. Evers B, Speksnijder EN, Schut E, et al. A tissue reconstitution model to study cancer cell-intrinsic and-extrinsic factors in mammary tumourigenesis. J Pathol.220(1):34-44.
    151. Malkoski SP, Cleaver TG, Lu SL, Lighthall JG, Wang XJ. Keratin promoter based gene manipulation in the murine conducting airway. Int J Biol Sci.2010,6(1):68-79.
    152. Vasioukhin V, Degenstein L, Wise B, Fuchs E. The magical touch:genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A.1999, 96(15):8551-8556.
    153. Klinghoffer RA, Magnus J, Schelter J, Mehaffey M, Coleman C, Cleary MA. Reduced seed region-based off-target activity with lentivirus-mediated RNAi. Rna.2010,16(5):879-884.
    154. Liu YP, Gruber J, Haasnoot J, Konstantinova P, Berkhout B. RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucleic Acids Res.2009,37(18):6194-6204.
    155. Moir DT, Ming D, Opperman T, Schweizer HP, Bowlin TL. A high-throughput, homogeneous, bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents. J Biomol Screen 2007;12:855-64.
    156. Wang X.M., Polonsky K., Fuchs E. di promoter-driven growth hormone transgene:Prospects for gene therapy. Proc Natl Acad Sci 1996;94:219-26.
    157. Lin MT, Wang F, Uitto J, Yoon K. Differential expression of tissue-specific promoters by gene gun. Br J Dermatol 2001;144:34-9.
    158. Pekny M, Lane EB. Intermediate filaments and stress. Exp Cell Res 2007;313:2244-54.
    159. Byrne C, Fuchs E. Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol Cell Biol 1993;13:3176-90.
    160. 彭振辉VJJ. LacZ转基因鼠体内角蛋白5及10的分布.中华医学杂志1998;78:633-5.
    161. 李知勉.廖和荣,李岩等.拔毛·剃毛对绵羊皮肤中GHR-IGF-1·GF-1R·AP3.2和KAP6-1基因表达的影响.安徽农业科学2006;34:211-3.
    162. 尹俊,郭志成等.内蒙古绒山羊105d胎儿皮肤的基因表达.畜牧兽医学报2005;36:1121-4.
    163. 张燕军,尹俊,李金泉等.内蒙古阿尔巴斯绒山羊毛囊结构及形态发生过程研究.中国农业科学 2007;40:1017-23.
    164. 吴乃虎.基因工程原理.2001:186.
    165. Klein K, Jungst C, Mwinyi J, Stieger B, Krempler F, Patsch W, et al. The Human Organic Anion Transporter Genes OAT5 and OAT7 Are Transactivated by Hepatocyte Nuclear Factor-1{alpha} (HNF-1{alpha}). Mol Pharmacol 2010.
    166. Zusev M, Benayahu D. The regulation of MS-KIF18A expression and cross talk with estrogen receptor. PLoS One 2009;4:e6407.
    167. Abujarour R, Efe J, Ding S. Genome-Wide Gain-of-Function Screen Identifies Novel Regulators of Pluripotency. Stem Cells 2010.
    168. 王荡,方六荣,罗锐,谢立兰,江云波,陈焕春,等.猪IFN-β启动子及其NF-κB结合位点萤光素酶报告载体的构建与活性检测.中国兽医学报2010;1:107-9,36.
    169. 楼希文,王琛.转录因子NF-κB的核内活性调控.细胞生物学杂志2009;31:741-8.
    170. Sinha S, Degenstein L, Copenhaver C, Fuchs E. Defining the regulatory factors required for epidermal gene expression. Mol Cell Biol 2000;20:2543-55.
    171. Leask A, Byrne C, Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A 1991;88:7948-52.
    172. Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. Embo J 2000; 19:6664-6674.
    173. Botchkarev VA, Botchkareva NV, Sharov AA, Funa K, Huber O, Gilchrest BA. Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol 2002;118:3-10.
    174. Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, et al. Epithelial Bmprla regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 2004;131:2257-2268.
    175. Andrei A.Sharov LW, Tatyana Y.Sharova, Frank Siebenhaar,Ruzanna Atoyan,Anthony M.Reginato, Coleen A.McNamara,Keiko Funa,Barbara A.Gilchrest,Janice L.Brissette and Vladimir A.Botchkarev. Noggin overexpression inhitits eyelid opening by altering epidermal apoptosisi and differentiation. EMBO jounal 2003;22:2992-3003.
    176. Guha U, Mecklenburg L, Cowin P, Kan L, O'Guin WM, D'Vizio D, et al. Bone morphogenetic protein signaling regulates postnatal hair follicle differentiation and cycling. Am J Pathol 2004;165:729-740.
    177. 袁晶.鸡细胞中基于载体的RNA干涉研究.中国农业大学博士论文(2007).
    178. 李荣.内蒙古绒山羊BMP-4, BMPR-IB基因cDNA的克隆及BMPR-IB在皮肤毛囊中的表达.动物科学学院.呼和浩特:内蒙古农业大学,2007.
    179. 闫祖威 吴江鸿,等.内蒙古绒山羊毛囊发育不同时期皮肤中BMP4基因的表达.黑龙江畜牧兽医(科技版)2009:35-36.
    180. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 2008;451:340-344.
    181. 叶梅霞,刘军梅,李吴,崔东清,王静澄,张志毅,安新民amiRNAi实现高效稳定的特异基因沉默新方法.中国生物工程杂志2010;30:118-125.
    182. 彭振辉,VJJ. LacZ转基因鼠体内角蛋白5及10的分布.中国医学杂志.1998,78:633-635
    183. Macias E, Miliani de Marval PL, Senderowicz A, Cullen J, Rodriguez-Puebla ML. Expression of CDK4 or CDK2 in mouse oral cavity is retained in adult pituitary with distinct effects on tumorigenesis. Cancer Res 2008;68:162-171.
    184. 程萱,毛春明,杨晓.角质细胞特异性表达Cre重组酶转基因小鼠的研制.中国比较医学杂志 2006;16:560.
    185. 潘巍巍,赖国旗,易发平,成海恩,张溢,左国伟,李成华,马永平,宋方洲.构建及鉴定携带角蛋白启动子和人乳头瘤病毒16E6/E7基因的重组腺病毒.西安交通大学学报(医学版)2006;27:421-425.
    186. Hu B, Zhang C, Baawo K, Qin R, Cole GJ, Lee JA, et al. Zebrafish K5 promoter driven GFP expression as a transgenic system for oral research. Oral Oncol 46:31-37.
    187. 任红艳,张兴举,杨述林,等.c-MYC转基因小鼠构建的改良方法.农业生物技术学报2008;16:37-40.
    188. 王勇,王峰超,魏泓,等.皮肤组织特异性表达hCTLA4-Ig转基因小鼠品系的建立.遗传学报2005;32:916-922.
    189. Yang X, Pursell B, Lu S, Chang TK, Mercurio AM. Regulation of beta 4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J Cell Sci 2009;122:2473-2480.