量子算法体系及其在遗传工程中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕着量子算法的研究和应用,共分为三个阶段,分别实现多量子位量子算法体系的研究与核磁共振(NMR)模拟实现;符合Grover算法实现过程的经典谐振子系统的设计与分析;基因信息处理中DNA复制和蛋白质合成符合量子信息处理机理的过程描述和模型建立三个阶段目标。
     本文第一阶段首先通过算符法进一步完整地证明经典Grover算法是可以扩展的,即经典Grover算法中组成Grover迭代过程的W-H变换可以用任意幺正变换替代,对均匀叠加初态和目标态相位反转的操作可以用任意角度的位相旋转替代。核磁共振(NMR)技术被认为是最为有效地实现量子计算的物理体系之一。多量子算符代数理论可以将幺正变换分解为一系列有限的单量子门和对角双量子门的组合。我们以多量子算符代数理论为基础,结合矩阵的扩展Kronecker积、正移置换矩阵和位元反转置换矩阵,提出了实现任意相位旋转角度的扩展量子搜索算法、量子傅立叶变换和量子小波变换的核磁共振脉冲序列设计方法,并设计出了2量子位扩展Grover算法、3量子位经典Grover算法、量子傅立叶变换、量子Hart和D~((4))小波变换的量子逻辑线路和NMR脉冲序列。然后,运用核磁共振量子计算仿真程序(QCE),实现了2量子位多个位相变化角度Grover算法的搜索过程,并根据实际的迭代次数,讨论了最佳位相变化角度。同时,通过QCE,实现了3量子位经典Grover算法的搜索过程,实现了2、3、4量子位的量子傅立叶变换和3量子位量子Harr和D~((4))小波变换的变换过程。多量子位量子算法在核磁共振中实现的难点是解决好自旋核之间的耦合作用,即利用多量子算符代数理论,将代表自旋核之间耦合的高维幺正变换分解成单量子逻辑门和双量子基本逻辑门的组合序列,再根据设定的具体位相旋转角度,将量子逻辑门转换成相应的NMR脉冲序列组合。最后,我们通过经典相干和量子相干的概念,运用量子态的密度矩阵,对经典Grover算法实现过程中量子态之间的相干性进行了分析,得出了Grover算法量子相干性与搜索迭代次数的关系。
     本文第二阶段是设计一种具有“波动特性”的宏观物理系统,以经典耦合谐振子系统为目标。由于该系统是通过实际的物理连接来实现各弹性振子的耦合,振子相对于平衡点两个方向的振动可以看成是两个态。如果将这些物理参数完全一致的弹性振子看成是量子计算所需的量子基态,量子计算所需的量子相干性由于实际的物理连接比纯量子系统要稳定的多,从其中找出某个振子就可以看成是无序数据项搜索问题。我们对这种具有“波动特性”的经典耦合谐振子系统的力学机理、系统哈密顿量、系统本征态和系统本征值等基本物理参数进行分析,证明了在其振动过程中,某个受到外界作用的振子,经过一定次数的往复振动后,整个系统的能量就被“集中”到该振子上,其能量达到最大,即作为目标振子被搜索到。而且,该振子被搜索到时系统往复振动的次数是振子数量的平方根数量级关系,证明了该系统可以实现Grover算法的过程。
     基因信息处理的基本过程,DNA复制和蛋白质合成过程中的核甘酸基配对过程可看成是无序数据项的搜索问题。达尔文的进化理论从生物学的角度证明了基因信息处理是优化的。DNA复制和蛋白质合成是经典过程,实际的物理系统由于很难完全隔绝外界干扰,量子相干性的维持存在着很大的困难,要完全用量子信息处理的思想去描述它还存在着很多难以克服的问题。因此,考虑到量子相干性的维持,本文第三阶段通过符合Grover量子搜索算法的经典谐振子系统和量子隧道效应建立了核甘酸基配对和氢键形成的模型,提出了该模型分子生物学实验验证的思路,并从维持量子相干性的角度探讨了DNA和RNA聚合酶的催化作用,对聚合酶的催化机理提出了新的解释方法,从信息学的角度论证了生物信息处理的优化。
Focusing on the research and application of Quantum Algorithms,this paper was divided into three parts,which were the studying and Nuclear Magnetic Resonance(NMR) simulation of multi-qubit Quantum Algorithms;the design and analysis of classical coupled harmonic oscillators system which corresponded to Grover search algorithm;and,proposing the model of nucleotide base selection and H-bond formation in DNA replication and proteins synthesis,which corresponded to quantum information processing mechanism.
     In the first part,based on the operator approach,we proved the generalized Grover search algorithm completely.That is,in Grover iteration,the Walsh-Hadamard transformation could be replaced by an arbitrary unitary transformation,and the phase inversions could be replaced by arbitrary phase rotations.NMR has been considered as one of the most effective physical system to realize quantum computation.As multiple-quantum operator algebra theory mentioned,any unitary transformation can be decomposed into a sequence of a limited number of one-qubit quantum gates and 2-qubit diagonal gates.Based on multiple-quantum operator algebra theory,the Generalized Kronecker Product,Perfect Shuffle Permutation Matrices and Bit-Reversal Permutation Matrices,we proposed the method to design NMR pulse sequences to implement Generalized Quantum Search Algorithm with arbitrary phase rotation,Quantum Fourier Transform and Quantum Wavelet Transform.Meanwhile,we designed the pulse sequences for 2-qubit generalized and 3-qubit classical Grover algorithm, Quantum Fourier Transform,Quantum Harr and D~((4)) Wavelet Transform.Then we experimental finished the algorithm with different phase rotations respectively in a 2-qubit system,on a Quantum Computer Emulator(QCE),and discussed the best phase rotating angle. Meanwhile,the 3-qubit classical Grover algorithm,2-,3- and 4-qubit Quantum Fourier Transform,3-qubit Quantum Harr and D~((4)) Wavelet Transform were simulated on QCE.The difficulty of realizing multi-qubit quantum algorithm is to overcome the coupling effect within spins.Based on multiple-quantum operator algebra theory,those high dimensional unitary transformation,which expressing coupling within spins,could be decomposed into a sequence of one-qubit and 2-qubit basic quantum gates.Setting the specific phase rotating angle,the quantum gates could be converted into NMR pulse sequences.At the end, according to the classical and quantum coherence,through the density matrix of quantum state,the quantum coherence during the iteration of Grover searching was studied,and the relation between quantum coherence and the number of iterations was proposed.
     In the second part,we designed a macroscopic system with wave features,aimed to classical coupled harmonic oscillators system.Because of the physical conjunction to couple those small oscillators,the vibration of a oscillator around its equilibrium could be seemed as binary state of a qubit.Such classical wave system is far more stable against decoherence compared to its quantum counterpart.We analysized the dynamic mechanism,effective Hamiltonian,eigenvalues and the corresponding eigenmodes for the system.We proved that during the vibration,if one of those oscillators was given a elastic reflection,after few round vibrations,the energy of the system was concentrated to this oscillator,making it to the maximum energy.The oscillator was reached as the target for a unsorted search.Also,we found that when the energy of the target oscillator getting to the maximum,the times of vibration had a squarely relationship with the number of small oscillators.So Grover quantum search algorithm were proved to be physically implanted in such a macroscopic wave system.
     The nucleotide base-pairing in DNA replication and proteins synthesis,which were basic procedures in genetic information processing,could be looked upon as an unsorted database search..The legacy of Charles Darwin—survival of the fittest,has proved,from the point of biology,that genetic information processing is optimal.DNA replication and proteins synthesis are classical.Because of the disturbance from circumstances,it is hard for them to maintain quantum coherence.So it seems there were some unovercomed difficulties to describe them under pure quantum situation.Based on the classical coupled harmonic oscillators system,which corresponded to Grover quantum search algorithm,and quantum tunneling effect,the model of the nucleotide base selection and H-bond formation was proposed in the last part of this paper.In addition,the catalysis of the DNA and RNA polymerase was discussed from the point of view of quantum coherence maintained.Finally, we proved the optimization of biological information processing through the point of informatics.
引文
[1]Feynman R P.Simulating Physics with Computers[J].J.Theor,Phys.21,467,1982.
    [2]Feynman R P.Quantum Mechanical Computer[J].Found Phys,1986,16:507-531.
    [3]Shor Peter.Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on Quantum Computer[J].SIAM Journal of Computing,26(5):1484.
    [4]Grover LK.A Fast Quantum Mechanical Algorithm for Database Search[C].In:Proc of the 28th Annual ACM Symposium on Theory of Computing,1996.212-219.
    [5]Benioff P.The computer as a physical system:a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[J].Journal of Statistical Physics,1982,22:563-591
    [6]Preskill J.Quantum Information and Computation[EB/OL].http://www.theory.caltech.edu//~preskill/ph229,1998-09.
    [7]Nielson MA.Chuang IL.Quantum Computation and Quantum Information[C].Cambridge:Cambridge University Press,2000.
    [8]Deutsch D.Quantum computational networks[C].Proc.Roy.Soc.London,A.439(1992)553-558.
    [9]苏晓琴,郭光灿.量子通信与量子计算[J].量子电子学报,2004,6:31-34
    [10]Bernstein,E.and Vazirani,U.Quantum complexity theory[J].In Proc.25th ACM Symposium on Theory of Computing,1993.
    [11]S.Parker,M.Plenio,Efficient factorization with a single pure qubit and logN mixed qubits,Phys.Rev.Lett.85,(2000) 3049,also quant-ph/0001066
    [12]S.Beauregard,Circuit for Shor's algorithm using 2n+3 qubits,Quantum Information and Computation,Vol.3,No.2(2003) pp.175-185,also quant-ph/0205095
    [13]Grover LK.Quantum Search on Structured Problems[J].Chaos,Solitions & Fractals,1999,Vol.10,No.10:1695-1705.
    [14][2]Grover,L..Quantum computers can search rapidly by using almost any transformation[J].Phys.Rev.Letters.1998,11,also quant-ph/9712011.
    [15]孙吉贵,何雨果.量子搜索算法[J].软件学报,2003,3:68-73
    [16]Knight P.quantum information processing without entanglement[J].Science,2000,287(5452):441-442.
    [17]Michel Boyer,Gilles Brassard,Peter Hoyer,et al.Tight Bounds on Quantum Searching[A].Proc of the Workshop on Physics and Computation(PhysComp96)[C].1996.36-43
    [18]宋辉、戴葵、王志英.一种改进的量子搜索算法[J].计算机工程与科学,2002,Vol.34, No.5:4-7,14.
    [19]Long GL,Li YS,Zhang WL,et al.Phase matching in quantum searching[J].Phys Lett A,1999,A262:27-34.
    [20]Dafa Li,Xinxin Li.More general quantum search algorithm Q=-IγV IτU and the precise formula for the amplitude and the non-symmetric effects of different rotating angles[J].Physics Letters A 287(2001) pp:304-316.
    [21]Protopopescu V,Barhen J.Solving a class of continuous global optimization problems using quantum algorithms[J].Physics Letters A 296,2000:9-14.
    [22]Pil H.Song and ILki Kim.Computational leakage:Grover's algorithm with imperfections[J].Eur.Phys.J.D 23,299-303(2003)
    [23]Zabinsky ZB,Smith RL.Pure adaptive search in global optimization[J].Mathematical Programming,1992,Vol.53:323-338.
    [24]Vladimir Cenry.Quantum Computers and Intractable(NP-Complete) Computing Problems[J].Physical Review A,1993,48:116-119.
    [25]Nicolas J.Cerfl,Lov K.Grover,Colin P.Williams.Nested Quantum Search and NP-Hard Problems[J].AAECC 10,311-338(2000)
    [26]王晓东.计算机算法设计与分析[C].电子工业出版社,2004.91.
    [27]Miao X.Universal construction of unitary transformation of quantum computation with one- and two-body interactions(a)[J],http://xxx.lanl.gov/abs/quant-pt/0003068.
    [28]Miao X.Universal construction of unitary transformation of quantum computation with one- and two-body interactions(b)[J],http://xxx.lanl.gov/abs/quant-ph/0003113.
    [29]Barenco,A.,Deutsch,D.,Ekert,A.& Jozsa,R.1995a Phys.Rev.Lett.74,4083.
    [30]Beals,Robert,Harry Buhrman,Richard Cleve,Michele Mosca and Ronald de Wolf.Quantum lower bounds by polynomials[J].Proceedings of 39th Annual Symposium on Foundations of Computer Science,November 1998,pp:352-361.
    [31]Boyer,Michel,Gilles Brassard,Peter Hφyer and Alain Tapp.Tight bounds on quantum searching[J].Fortschritte Der Physik,special issue on quantum computing and quantum cryptography,1998,Vol.46,pp:493-505.
    [32]Hoyer,Peter.Conjugated operators in quantum algorithms[J].Physical Review A,Vol.59,May 1999,pp:3280-3289.
    [33]Cleve,Richard,Artur Ekert,Chiara Macchiavello and Michele Mosca.Quantum algorithms revisited[J].Proceedings of the Royal Society,London,Vol.A354,1998,pp:339-354.
    [34]Brassard,Gilles,Peter Hφyer and Alain Tapp,Quantum counting[J].Proceedings of 25th International Colloquium on Automata,Languages,and Programming,Lecture Notes in Computer Science,Vol.1443,Springer-Verlag,July 1998,pp:820-831.
    [35]Radhika S.Grover,Weijia Shang,Qiang Li.Bit-level two's complement matrix multiplication[J].INTEGRATION,the VLSI journal 33(2002) 3-21.
    [36]R.Grover,W.Shang,Q.Li.A comparison of FPGA implementations of bit-level and word-level matrix multipliers[J].Proceedings of the Tenth International Conference on Field-Programmable Logic and Applications,FPL 2000,Villach,Austria,August 2000,pp:422-431.
    [37]R.Grover,W.Shang,Q.Li.An improved architecture for bit-level matrix multiplication[J].Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications,Vol.Ⅳ,PDPTA'2000,Las Vegas,Nevada,June 2000,pp:2257-2264.
    [38]Chandrasekhar Ramanathan,Nicolas Boulant,Zhiying Chen,David G.Cory,Isaac Chuang,and Matthias Steffen.NMR Quantum Information Processing[J].Quantum Information Processing,Vol.3,Nos.1-5,October 2004.
    [39]Chuang IL,Gershenfeld NA,et al.Bulk quantum computation with nuclear magnetic resonance:theory and experiment[J].Proc R Soc Load A,1998,454:447-467.
    [40]Fu L iping,Xiao Li,Luo Jun and Zeng Xizhi.Realization of Quantum Algorithm on Simulator and Spectrometer of NMR[J].Chinese Journal of Magnetic Resonance,Vol.16No.4,1999.pp:341-344.
    [41]H.De Raedt1;a,K.Michielsen1,A.Hams1,S.Miyashita2,and K.Saito.Quantum spin dynamics as a model for quantum computer operation[J].Eur.Phys.J.B 27,2002,pp:15-28.
    [42]方细明,朱熙文.量子逻辑网络的核磁共振实现[J].原子与分子物理学报,Vol.18,No.2,2001年4月:173-177.
    [43]Pittenger AO.An Introduction to Quantum Computing Algorithms[C].Birkhauser,Boston,1999.
    [44]Shor Peter.Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on Quantum Computer[J].SIAM Journal of Computing,26(5):1484.
    [45]Ekert A.,Jozsa R.Quantum computation and Shor's factoring algorithm[J].Rev.Mod.Phys.,68,1966:733.
    [46]Yang XD,Wei DX,Luo Jun and Miao XJ.Preparation of pseudo pure state in nuclear spin ensemble using CNOT gates combination[J].Chinese Science Bulletin,2002,Vol.47,No.22:1856-1860.
    [47]K.T.Arasu and W.de Launey.Two-dimensional Perfect Quaternary Arrays[J].IEEE Trans.Inform.Theory,2001,47(4):1482-1493.
    [48] Wei Daxiu, Luo Jun, Sun Xianping, Zeng Xizhi, Yang Xiaodong, Liu Maili, Ding Shangwu. NMR experimental realization of seven-qubit D-J algorithm and controlled phase-shift gates with improved precision[J]. Chinese Science Bulletin, 2003, 48(3): 239—143.
    [49] Wei Daxiu, Yang Xiaodong, Luo Jun, Sun Xianping, Zeng Xizhi, Liu Maili. NMR experimental implementation of three parties quantum super dense coding[J]. Chinese Science Bulletin, 2003, 49(5): 423—426.
    [50] Zeyad Al Zhour and Adem Kilicman. Matrix Equalities and Inequalities Involving Khatri-Rao and Tracy-Singh Sums[J]. Journal of Inequalities in Pure and Applied Mathematics, 2006, Vol.7, Issue 1: 496-513.
    [51] A. Boggess, F.J. Narcowich. A First Course in Wavelets with Fourier Analysis, Prentice-Hall[C]. Englewood Cli7s, NJ, 2001.
    [52] C. Van Loan. Computational Frameworks for the Fast Fourier Transform[C]. SIAM Publications, Philadelphia, 1992.
    [53] D. Beckman, A. N. Chari, S. Devabhatuni, J. Preskill. Efficient networks for quantum factoring[J]. Physical Review A, 54,1996: 1034.
    [54] Ioannis G. Karafyllidis. Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulater[J]. Quantum Information Processing, Vol. 2, No. 4, 2003: 271-288.
    [55] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C: The Art of Scientific Computing, 2nd Edition, Cambridge Univ. Press, 1992.
    [56] Ventura D, Martinez T. Quantum associative memory with exponential capacity [J]. Proceedings of the International Joint Conference on Neural Networks. 1998. 5: 509-513.
    [57] P. Hoyer. Efficient quantum transforms [J]. Los Alamos preprint archive, Feb. 1997. http://xxx.lanl.gov/archive/quant-ph/9702028.
    [58] R.Jozsa. Quantum factoring, discrete logarithms and the hidden subgroup problem[J]. Computing in Science & Engineering, 2001, Vol.3, No.2: 34-43.
    [59] Fatih Bulut and W. N. Polyzou. Wavelet methods in the relativistic three-body problem[J]. Phys. Rev. C, 2006, Vol.73:34-48.
    
    [60] Fijany, A., Williams, C. P.. Quantum wavelet transforms: Fast algorithms and complete circuits[J]. First NASA International Conference, Quantum Computing and Quantum Communications'98, Palm Springs, California, USA, 1998: 10—33.
    [61] Michielsen K, Raedt HD. QCE: A Simulator for Quantum Computer Hardware[J]. Turk J. Phys., 2003, 27: 129.
    [62] http://rugth30.phys.rug.nl/compphys.
    [63]Bruno Julia-Diaz,Joseph M.Burdis,Frank Tabakin.QDENSITY—A Mathematica Quantum Computer simulation[J].Computer Physics Communications 174(2006) pp:914-934.
    [64]J.A.Jones,and M.Mosca,"Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer",J.Chem.Phys.109,1998.pp:1648-1653.
    [65]I.L.Chuang,L.M.K.Vandersypen,Xinlan Zhou,D.W.Leung,and S.Lloyd.Experimental realization of a quantum algorithm[J].Nature 393,1998.pp:143-146.
    [66]I.L.Chuang,N.Gershenfeld,and M.Kubinec.Experimental implementation of Fast Quantum Searching[J].Phys.Rev.Lett.80,1998.pp:3408-3411.
    [67]C.Zalka.Simulating quantum systems on a quantum computer[J].Proc.R.Soc.London A454,1998.pp:313-322.
    [68]H.De Raedt,A.H.Hams,K.Michielsen,S.Miyashita,and K.Saito.Quantum Spins Dynamics and Quantum Computation[J].J.Phys.Soc.Jpn.(in press),e-print quant-ph/9911038.
    [69]B.Pablo-Norman,M.Ruiz-Altaba.Noise in Grover's quantum search algorithm[J].Phys.Rev.A 61(2000) 012301.
    [70]L.M.K.Vandersypen et al..Implementation of a multiple round quantum dense coding using nuclear magnetic resonance[J].Appl.Phys.Lett.76(2000) pp:646-653.
    [71]Hans De Raedt,Anthony H.Hams,and Kristel Michielsen.Quantum Computer Emulator[J].Comp.Phys.Comm.November 28,2000,pp:1-20.
    [72]A.Carlini,A.Hosoya.Analysis of Grover's quantum search algorithm as a dynamical system[J].Phys.Lett.A 280(2001) 114-122,quantph/9909089.
    [73]Long GL,Li YS,Zhang WL,et al.Phase matching in quantum searching[J].Phys Lett A,1999,A262:27-34.
    [74]Long GL,Yan HY,Li YS,et al.Experimental NMR realization of a generalized quantum search algorithm[J].Phys Lett A,2001,A286:121-126.
    [75]曾谨言.量子力学导论[C].北京大学出版社,1998年3月第2版
    [76]周奇年.量子计算机理论中的量子叠加和量子纠缠[J].原子核物理评论,2002,19(增刊)pp:160-163.
    [77]张登玉.量子逻辑门与量子编码[M].博士论文,1998年6月
    [78]黄祝明,吴锋.大学物理学(下册)[C].化学工业出版社,2002年第1版:198-201.
    [79]Benioff P..The Computer as a Physical System:A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines[J].J.Statistic Phys.,1980,22.pp:563-570
    [80]Benioff P.Quantum Mechanical Hamiltonian Models of Turing Machines[J].J Statistic Phys.,1982,29.pp:515-520.
    [81]Benioff P.Quantum Mechanical Hamiltonian Models of Turing Machines that Dissipate no Energy[J].Phys.Rev.Lett.,1982,48.pp:1581-1590.
    [82]Feynman R.Simulating Physics with Computers[J].Internet J.Theoretical Phys.,1992,21.pp:467-472.
    [83]Feynman R.Quantum Mechanical Computers[J].Found Phys.,1996,16.pp:507-513.
    [84]Deutsch D.Quantum Theory,the Church-Turing Principle and the Universal Quantum Computer[J].Proc Roy Soc London Ser A,1985,400.pp:96-102.
    [85]Deutsch D,Barenco A,Ekert.Universality of Quantum Computation[J].Proc Roy Soc London Ser A,1995,449.pp:699-707.
    [86]孙昌璞.量子测量问题的研究及应用[J].物理,2000,29(8).pp:457-467.
    [87]孙昌璞.量子理论若干基本问题研究的新进展[J].物理学进展,2001,21(3).pp:317-360.
    [88]李承祖,黄明球,陈平形,梁林海.量子通信和量子计算[C].国防科技大学出版社,2001年第一版.
    [89]S.Hill,W.K.Wootters,Entanglement of a Pair of Quantum Bits[J].Phys.Rev.Lett.78,1997.pp:5022-5025,quant-ph/9703041.
    [90]A.Uhlmarm,Fidelity and concurrence of conjugated states[J].Phys.Rev.A 62.2000,032307,quant-ph/9909060.
    [91]L.Grover & A.Sengupta.The Mathematics of Quantum Computation[C].CRC Press,3,2001[quant-ph/0109123].
    [92]程守洙,江之永.普通物理学(第1册)[C].高等教育出版社,1982年11月第4版:212-216.
    [93]A.Uhlmann,Phys.Rev.A 62(2000) 032307,quant-ph/9909060.
    [94]张三惠,大学物理学-力学[C],清华大学出版社,1999年4月,147-150.
    [95]于肇贤,王继锁,刘业厚.非简谐振子的广义相干态的高阶压缩效应及反聚束效应[J].物理学报,1997,46(6):1693-1696.
    [96]蒋继建,李洪奇,李传安.利用表象变换精确求解最一般双藕合谐振子的能量本征值[J].大学物理,Vol.24,No.6,2005年7月,36-37,55.
    [97]倪致祥.非简谐振子广义相干态的叠加态[J].物理学报,1997,46(6):1687-1689.
    [98]朱从旭,汪发伯,匡乐满.关于奇偶相干态的经典特性[J].物理学报.1994,43(8):1263-1267.
    [99]柳盛典,逮怀新,邓汝钢.么正变换与二粒子祸合体系哈密顿量的对角化技术[J].大学物理,1993,12(5).pp:25-26.
    [100]王明泉.两个藕合谐振子体系能量本征值和本征函数的三种解法[J].大学物理,1993,12(10).pp:22-24.
    [101]王长荣.一维谐振子能级和波函数的代数解法[J].云南师范大学学报(自然科学版),2001,21(3).pp:22-24.
    [102]范洪义.量子力学表象与变换论[C].上海科学技术出版社,1997.pp:62-64.
    [103]S.Lloyd.Quantum search without entanglement[J].Phys.Rev.A61 010301(R).quant-ph/9903057.
    [104]赵凯华,罗蔚茵.力学[C].高等教育出版社,2000年3月,141-147.
    [105]R.Motwani & P.Raghavan.Randomized Algorithms[C].Cambridge University Press,1995.
    [106]于祖荣.量子光学中的非经典态[J].物理学进展,1999,19(5):72-74.
    [107]M.J.Sutcliffe & N.S.Scrutton.Phil.Trans.[M]R.Soc.Lond.A358,2000,367-386.
    [108]C.Zalka.Grover's quantum searching algorithm is optimal,Phys.Rev.A60 1999.pp:2746,quant-ph/9711070.
    [109]A.Patel.Why Genetic Information processing could have a quantum basis[J].J.Biosci.26(2001) 145-151,quant-ph/0105001.
    [110]E.Schrodinger,What is Life?[C],Cambridge University Press(First published 1944).
    [111]欧阳曙光,贺福初.生物信息学:生物实验数据和计算技术结合的新领域[J].科学通报,第44卷,第14期,1999,pp:1457-1468.
    [112]胡得华,方平.基因库(GenBank)的电子邮件检索[J].现代图书情报技术,1999年3期,43,pp:31-32,43.
    [113]R.Dawkins,The selfish gene[C],Oxford university press,Oxford(1989).
    [114]J.D.Watson,N.H.Hopkins,J.W.Roberts,J.A.Steitz and A.M.Weiner,Molecular Biology of the Gene[C],Fourth Edition,Benjamin/Cummings(1987).
    [115]Max Tegrnark.The Importance of Quantum Decoherence in Brain Processes[J].Phys.Rev.E 61,2000.pp:4194-4206.
    [116]Amar Mukherjee.Computational Biology-The New Frontier of Computer Science[M].Arun K.Choudhury Memorial Lecture,Kolkata,Dec.27,2004.
    [117]Roger Penrose.The Emperor's New Mind:Conceming Computers,Minds,and the Laws of Physics[C].Penguin,USA 1991.
    [118]Gusfield,D.Algorithms on Strings,Trees and Sequences:Computer Science and Computational Biology[C].Cambridge University Press.1997.
    [119] Pevzner, P.A. Computational Molecular Biology: An Algorithmic Approach[C]. Bradford Book. 2000.
    
    [120] C.E. Shannon, Bell System Tech. J. 27 (1948) 379, 623.
    [121] Knight R.D., Freeland S.J. and Landweber L.F. 2001 Rewiring the keyboard: Evolvability of the genetic code. Nature Reviews Genetics 2,49-58.
    [123] Charles Seife, Cold Numbers Unmake the Quantum Mind[J]. Science, 2000, 287, No. 5454, p: 791-797.
    [124] Koichiro Matsuno. Cell motility as an entangled quantum cohererence[J] BioSystems, 1999, 51, pp: 15-19.
    [125] Robert A. Freitas Jr. Nanomedicine[C] Volume I: Basic Capabilities, Landes, Bioscience. 1999, p: 147.
    
    [126] Crick F.H.C. Crick 1968 The origin of the genetic code. J. Mol. Biol. 38, 367-379.
    [127] J. Gribbin, In Search of the Double Helix: Quantum Physics and Life, Penguin Books (1995).
    [128] Gulick AM, Bauer CB, Thoden JB, Rayment I. X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain.[J]. Biochemistry, 1997, 36. pp: 11619-28.
    [129] J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz & A.M. Weiner. Molecular Biology of the Gene[C], Fourth Edition. Benjamin/Cummings (1987).
    [130] Koichiro Matsuno. Being free from ceteris paribus a vehicle of founding physics upon biology rather than the other way around[J]. Appl. Math. Comp. 1993, 56, pp: 261-279.
    [131] Guha Thakutha, D. and Stormo, G. D. Identifying dna and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics[J]. 2001, 10. pp: 1205-1214.
    [132] Beard W.A., Shock D.D., Vande Berg B.J. & Wilson S.H.. Efficiency of correct nucleotide insertion governs DNA polymerase fidelity [J]. J. Biol Chem. 277(2002): 47393-47398.
    [133] Koichiro Matsuno, Raymond C. Paton. Is there a biology of quantum information[J]. BioSystems, 2000, 55. pp: 39-46.
    [134] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu and H.D. Zeh, Decoherence and the appearance of a classical world in quantum theory, Springer, Berlin (1996).
    [135] Joshua J. Arulanandham, Cristian S. Calude, Michael J. Dinneen. A fast natural algorithm for searching[J]. Theoretical Computer Science 320, 2004. pp: 3-13.
    
    [136] Yockey, H. Information Theory and Molecular Biology[C]. Cambridge University Press, Cambridge. 1992.
    [137] A.L. Lehninger, D.L. Nelson and M.M. Cox, Principles of biochemistry, Second edition, Worth Publishers, USA (1993).
    [138] Knight RD, Freeland SJ, Landweber LF. Selection, history and chemistry: the three faces of the genetic code[J]. Trends Biochem Sci, 1999, 24, pp: 241-247.
    [139] Schempp, W.. Replication and transcription processes in the molecular biology of gene expressions: control paradigms of the DNA quantum holographic information channel in nanobiotechnology[J]. BioSystems, 2003, 68, pp: 119-145.
    
    [140] Turner, P.E., Cho, L. Prisoner's dilemma in an RNA virus[J]. Nature 398, 1999. pp: 441-443.
    
    [141] Kunkel T.. DNA replication fidelity[J]. J. Biol Chem. 279(2004):16895.
    [142]曾谨言.量子力学[C].科学出版社,1984年5月.
    [143] Li X., Cai Z. & Sevilla M. Investigation of Proton Transfer within DNA Base Pair Anion and Cation Radicals[J]. J. Phys. Chem. B 105(2001):10115-10123.
    [144] P.C.W. Davies. Does quantum mechanics play a non-trivial role in life?[J]. BioSystems, 2004, 78. pp: 69-79.
    
    [145] Patel A. 2000a Quantum algorithms and the genetic code. In proceedings of the winter institute on foundations of quantum theory and quantum optics, Calcutta, Pramana - J. Phys. 56, 367-381 [quant-ph/0002037].
    [146] Cooper D N, Ball E V, Krawczak M.. The human gene mutation database[J]. Nucleic Acids Res. 1998, 26(1). pp: 285—287.
    [147] Borsani G, Ballabio A, Banfi S. A practical guide to orient yourself in the labyrinth of genome databases[J]. Hum Mol Genet, 1998,7(10). pp: 1641 — 1648.
    [148] Goodman N, Rozen S, Stein L D, et al. The LabBase systemfor data management in large scale biology research laboratories [J]. Bioinformatics, 1998, 14(7). pp: 562-574.
    [149] Baxevanis AD. The Internet and the biologist[J]. Methods Biochem Anal, 1998, 39, pp: 1-15.
    [150] Tegmark, M. The importance of quantum decoherence in brain processes[J]. Phys. Rev. 2000, E61,pp: 4194-4206.
    
    [151] Vedral, V. Entanglement hits the big time[J]. Nature, 425, 2003, pp: 28-29.
    [152] Kyoichi Okamoto, Osamu Watanabe. Deterministic Application of Graver's Quantum Search Algorithm[J]. J. Wang(Ed.): COCOON 2001, LNCS, 2108, pp: 493-501.