随机激光的光学特性及其调制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕随机介质激光的光学特性及应用,分别对随机介质的光子局域化、能量分布、频谱特性、模式竞争等问题及光子晶体对其辐射特性的调制进行了研究;提出了一种柔性随机半导体激光器的制备方案,为制备具有良好加工性能的、可用于集成光路的、低成本的低阈值微型激光器提供了一条新途径和理论依据。
     作为全文的理论基础,详细地介绍了转移矩阵法(TMM)和有限时域差分(FDTD)法的理论和算法,在分析现有的实验现象和理论的基础上,提出了一种新的整体散射效应理论。
     基于整体散射效应理论,模拟了一维随机介质的局域模的分布,分析了激光辐射与泵浦面积的关系。利用激光物理理论对ZnO粉末的激光输出特性进行了模拟,结果与实验定性吻合,较好地解释无序激光的实验现象。
     对二维随机介质一系列的光学特性进行了研究,结果显示:光在二维随机介质中呈局域化分布,局域化与介质的结构和激发光的波长均有关,局域化程度与介质颗粒填充密度有关,填充密度越大局域化程度越强,所需的激发阈值越低。随机介质的谱呈自发辐射特性,整体谱的能量较弱,表明单纯的随机介质激光阈值比较高。在随机介质中由于介质颗粒的随机分布会形成一些结构不同的准封闭区域,不同的准封闭区域对应的谱不同,发射谱还与激发波长有关,当激发波长与准封闭区域的结构参数偏差较大时,频谱会此消彼涨,能量衰减较快;而当激发波长与该结构参数接近时,频谱结构相对稳定,能量衰减较慢。随机激光是随机介质与激发光相互作用的整体散射结果。
     为了对随机介质的辐射输出进行有效的控制和利用,提出用光子晶体来抑制随机介质的自发辐射,使其向所需要的频率辐射的构思。并对此进行了数值模拟,结果发现光子晶体不仅可使系统局域光的能力得到了增强,提高系统的有效增益,降低激光阈值,而且光子晶体还能抑制团簇中的自发辐射,起到调制激光模式的作用。而且还分析了光子晶体的外形、晶格颗粒尺寸、结构类型、介电常数等各种结构参数对调制作用的影响。在此基础上提出了一种柔性的随机半导体激光器的设计方案,并对这种柔性半导体激光器的光学特性进行理论研究,结果显示这种柔性半导体激光器有较好的光学性能。
In this dissertation, around the optical properties and the application of random laser, many problems about random media are studied, such as photon-localization, the spatial distributions of optical field, spectrum characteristics, modes competition and modulating for the radiation characteristics of random media by photonic crystals. A new scheme for fabricating flexible semiconductor microlasers is put forward, and this scheme can provide a new way to manufacture cheap micro-lasers with low threshold, good workability and possibility of being imbedded in optical integrated circuit.
     As the theoretical basis of this dissertation, the theory and algorithm of transfer matrix method (TMM) and finite difference time domain (FDTD) method are analyzed in detail, and a new holistic scattering effect physical model is put forward based on the experimental phenomena of random laser.
     Based on the holistic scattering effect physical model, the distributions of localized modes in 1D random media are simulated, and the relationship between random lasing emission and pumping area is analyzed. The results are coincident with experimental phenomena qualitatively and can explain some experimental phenomena of random laser reasonablely.
     A series of optical properties of 2D random media are studied and the results show that the light is localized obviously in the random media. And the spatial distribution of the energy is both related with positions of the particles and the wavelength of excitation light. The degree of localization is related with the particle filling density also, and if the particle filling density increases, the localization should become stronger. So the threshold should become lower. The emission spectra of random media take on the characteristic of spontaneous emission and the intensity of spectra is weak, so a pure random medium needs higher threshold.
     Some quasi-closed structures formed from the particles in random medium, different spectrums appear in different quasi-closed structures. When the wavelength of excitation light is not suited with the configuration parameter of a quasi-closed structure, the spectral peaks are changed with time frequently and the energy of the peaks is attenuated quickly. And when the wavelength of the light is more suited with configuration parameter of the quasi-closed structure, there is a certain peak keeping its leading status in its spectrums and the energy attenuates slowly. So photon-localization is both related with configuration of medium and the wavelength of excitation light and random laser can be regard as whole scattering effect between the medium and the excited light.
     To control the radiation characteristic of random laser, photonic crystal (PC) is introduced to forbid the spontaneous emission and lead it to the needing frequency. The radiation characteristic of the system combining random medium and PC is investigated. The results show that when the cluster was introduced into a perfect PC, some spontaneous emission spectral peaks drop off gradually and a new spectral peak emerged and then got the run upon rapidly. So if a random gain system could be put into a ordered system, the light energy could be confined in this system, spontaneous emission can be forbidden, the lasing modes could be modulated, the effective gain could be improved and the lasing threshold could be reduced effectively. Furthermore, the influences on modulating effect by structure parameters of PCs such as shape, size of crystal lattice particles, lattice type and dielectric constant are investigated in this dissertation.
     According to these results, an easier and cheaper scheme is put forward to manufacture flexible semiconductor microlasers, and the radiation characteristics of this kind of laser are simulated. The results show the flexible semiconductor microlaser has good optical property.
引文
[1]V.S.Letokhov.Generation of light a scattering medium with negative resonance absorption.Sov.Phys.JETP,1968,26(8):835-840.
    [2]N.M.Lawandy,R.M.Salachandran,A.S.L.Gomes,E.Sauvain.Laser action in strongly scattering media.Nature,1994,368:436-438.
    [3]D.S.Wiersma,M.P.van Albada,Ad Lagendijk.Coherent Backscattering of Light from Amplifying Random Media.Phys.Rev.Lett.1995,75(9):1739-1742.
    [4]D.S.Wiersma,A.Lagendijk.Light diffusion with gain and random lasers.Phys.Rev.E 1996,54(4):4256-4265.
    [5]H.Cao,Y.G.Zhao,S.T.Ho,E.W.Seelig,Q.H.Wang,R.P.H.Chang.Random laser action in semiconductor powder.Phys.Rev.Lett.,1999,82(11):2278-2281.
    [6]H.Cao,J.Y.Xu,D.Z.Zhang et al.Spatial Confinement of Laser Light in Active Random Media.Phys.Rev.Lett.,2000,84(24):5584-5587.
    [7]S.V.Frolov,Z.V.Vardeny,K.Yoshino.Stimulated emission in high-gain organic media.Phys.Rev.B,1999,59(8):R5284-R5287.
    [8]Xunya Jiang,C.M.Soukoulis.Time Dependent Theory for Random Lasers.Phys.Rev.Lett.2000,85(1):70-73.
    [9]H.Cao,Xunya Jiang,Y.Ling et al.Mode repulsion and mode coupling in random lasers.Phys.Rev.B,2003,67(16):161101-161104.
    [10]C.M.Soukoulis,Xunya Jiang,J.Y.Xu,H.Cao.Dynamic response and relaxation oscillations in random lasers.Phys.Rev.B,2002,65(4):041103-041107.
    [11]Y.Ling,H.Cao,A.L.Burin,M.A.Ratner et al.Investigation of random lasers with resonant feedback.Phys.Rev.A,2001,64(6):063808-063815.
    [12]H.Cao,Y.Ling,J.Y.Xu et al.Photon Statistics of Random Lasers with Resonant Feedback.Phys.Rev.Lett.2001,86:4524-4526.
    [13]A.L.Burin,H.Cao,M.A.Ratner.Two-Photon Pumping of a Random Laser.IEEE Journal of selected topic in quantumelectronics,2003,9(1):124-127.
    [14]王可嘉,刘劲松.双光子抽运随机激光器中辐射光能量的演化.物理学报,2007,56(7):3906-3910.
    [15]G.R.Williams,S.B.Bayram et al.Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors.Phys.Rev.A,2001,65(1):013807-013812.
    [16]Jinsong Liu, Zheng Xiong. Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media. Opt. Commu., 2006,268: 294-299.
    [17]A. Qualtieri, T. Stomeo, S. Lattante, M. Anni, L. Martiradonna, M. De Vittorio. Fabrication of disordered photonic crystal structures fororganic random lasing devices. Microelectronic Engineering, 2007, 84:1581-1584.
    [18]A.L.Burin, H.Cao, M.A.Ratner. Understanding and control of random lasing. Phys.B, 2003,338:212-214.
    [19] Y.Feng, k.I.Ueda. Random stack of resonant dielectric layers as a laser system. Optics express, 2004,12(15):3307-3312.
    [20]Xunya Jiang, C.M.Soukoulis. Localized random modes and a path for observing localization.Phys.Rev.E, 2002, 65(2):025601-025604.
    [21]Xunya Jiang, Songlin Feng, C.M.Soukoulis. Coupling, competition and stability of modes in random lasers.Phys.Rev.B, 2004, 69(10):104202-104208.
    [22]V.Perinorv, A Luks, J.Krepelka. Quantum and semiclassical models for a random laser.J.Opt.B: Quantum Semiclass.2004, 6:S104-S110.
    [23]Karen L van der Molen, Allard P. Mosk, Ad Lagendijk. Quantitative analysis of several random lasers. Opt. Commu., 2007, 278:110-113.
    [24]B.Liu, A.Yamilov, Y.Ling. Dynamic nonlinear effect on lasing in a random medium. Phys.Rev.Lett., 2003, 91(6):063903-063906.
    
    [25]D. S. Wiersma. The smallest random laser. Nature, 2000,406(6792): 132-133.
    [26]R.C.Polson, Z.V.Vardeny. Random lasing in human tissues. Appl.Phys.Lett. 2004, 85(7):1289-1291.
    [27]B.Li, GWilliams, S.C.Rand. Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina.Opt.Lett.2002, 27(6):394-396.
    [28]P.Pradhan, N.Kumar. Localization of light in coherently amplifying random media. Phys.Rev.B, 1994,50(13):9644-9647.
    [29]A.Yu.Zyuzin. Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium Phys.Rev.E, 1995,51(6):5274-5278.
    [30] S.John, GPang. Theory of lasing in a multiple-scattering medium. Phys.Rev. A 1996,54(4):3642-3652.
    [31]G.A.Berger, M.Kempe, A.Z.Genack. Dynamics of stimulated emission from random media. Phys.Rev.E, 1997,56(5):6118-6122.
    [32]Z.Q.Zhang. Light amplification and localization in randomly layered media with gain.Phys.Rev.B,1995,52(11):7960-7964.
    [33]A.K.Gupta,A.M.Jayannavar.Electron wave transport in coherently absorptive random media,Phys.Rev.B,1995,52(6):4156-4161.
    [34]J.C.J.Paasschens,T.Sh.Misirpashaev,C.W.J.Beenakker.Localization of light:Dual symmetry between absorption and amplification.Phys.Rev.B,1996,54(17):11887-11890.
    [35]M.Balachandran,N.M.Lawandy,J.A.Moon.Opt.Lett.1997,22:319-321
    [36]A.L.Burin,M.A.Ratner,H.Cao,R.P.H.Chang.Model for a random laser.Phys.Rev.Lett.,2001,87(21):215503-215505.
    [37]V.M.Apalkom,M.E.Raikh,B.Shapiro.Random resonators and prelocalized model in disordered dielectric films.Phys.Rev.Lett.,2002,89(1):016802-016804
    [38]C.Vanneste,P.Sebbah.Selective Excitation of Localized Modes in Active Random Media.Phys.Rev.Lett.2001,87:183903-183905.
    [39]Vladimir M.Shalaev(Ed.),Optical properties of nano structured random media,(Springer,Berlin),2001,303-328.
    [40]王宏,欧阳征标等.随机性对部分随机介质激光器阈值的影响.物理学报,2007.56(5):2616-2622
    [41]Ying-mao Xie,Zheng-dong Liu.A new physical model on lasing in active random media.Phys.Lett.A,2005,341(2):339-344.
    [42]Ying-mao Xie,Zheng-dong Liu.Effect of pump area on lasing modes in active random media.Chin.Phys.Lett.,2005,22(11):2827-2830.
    [43]王慧琴,刘正东等.随机介质ZnO激光的一种整体效应模型.物理学报,200655(5):P2281-2285
    [44]Xunya Jiang.The theory of random laser systems:[Doctoral dissertation].USA:Iowa State University,2001.
    [45]Virginie Lousse,Jean Pol Vigneron.Bistable behaviour of a photonic crystal nonlinear cavity.Physica B,2003,338:171-177.
    [46]I.S.Maksymov,L.F.Marsal,J.Pallare's.Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals.Opt.Commu.,2004,239:213-222.
    [47]Xiaodong Wang,Fan Wang,Libin Cui,Dahe Liu.Analysis of influence on the properties of heterogeneous volume hologram by the structures of bandgaps.Opt.Commu.,2003,221:289-293.
    [48]Jun Zheng,Zhicheng Ye,Xiaodong Wang,Dahe Liu.Analytical solution for band-gap structures in photonic crystal with sinusoidal period.Phys.Lett.A,2004,321:120-126.
    [49]E.Lidorikis,C.M.Soukoulis.Pulse-driven switching in one-dimensional nonlinear photonic band gap materials:a numerical study.Phys.Rev.E,2000,61(5):5825-5829.
    [50]X.S.Xu,B.Y.Cheng,D.Z.Zhang.Transient gain in photonic crystals.Appl.Phys.B,2003,77:515-519.
    [51]Libin Cui,Fan Wang,Jing Wang,Zhaona Wang,Dahe Liu.The rule for broadening of band-gaps in biperiodic photonic crystals.Phys.Lett.A,2004,324:489-493.
    [52]A.Jafarpour,E.Chow,C.M.Reinke,et al..Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides.Appl.Phys.B,2004,79(4):0946-2171.
    [53]J.B.Pendry,A.MacKinnon.Calculation of photon dispersion relations.Phys.Rev.Lett.,1992,69(19):2772-2775.
    [54]P.M.Bell,J.B.Pendry,A.J.Ward.A program for calculating photonic band structures and transmission coefficients of complex structures.Comp.Phys.Comm.,1995,85(2):306-322.
    [55]J.B.Pendry.Calculating Photonicband structure.J.Phys.:Condens.Matter,1996,8(9):1085-1108.
    [56]Z.Q.Zhang.Light amplification and localization in randomly layered media with gain.Phys.Rev.B,1995,52(11):7960-7964
    [57]C.W.J.Beenakker.Thermal Radiation and Amplified Spontaneous Emission from a Random Medium.Phys.Rev.Lett.,1998,81(9):1829-1832
    [58]A.K.Gupta,A.M.Jayannavar.Electron wave transport in coherently absorptive random media.Phys.Rev.B,1995,52(6):4156-4161
    [59]J.C.J.Paasschens,T.Sh.Misirpashaev,C.W.J.Beenakker.Localization of light:Dual symmetry between absorption and amplification.Phys.Rev.B,1996,54(17):11887-11890
    [60]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media.IEEE Trans.Antennas Proga.1996,14(3):302-307.
    [61]C.T.Chan,Q.L.Yu,et al..Order-N spectral method for electromagnetic waves. Phys.Rev.B,1995,51(23):16635-16642.
    [62]A.J.Ward,J.B.Pendry.Calculating photonic Green functions using a nonorthogonal finite-difference time-domain method.Phys.Rev.B,1998,58(11):7252-7259.
    [63]J.P.Berenger,A perfectly matched layer for the absorption of electromagnetic waves.J.Comp utational Physics,1994,114(1):185-200
    [64]J.P.Berenger,Perfectly matched layer for FDTD solution of wave-structure interaction problems.IEEE Trans.Antennas and Propagation,1996,51(1):110-117
    [65]J.P.Berenger,A perfectly matched layer for free-space simulations in finite-difference comuter codes.Annales des telecommunications,1996,51(1):36-46
    [66]S.C.Hagness,R.M.Joseph,A.Taflove.Subpicosecond electrodynamics of distributed Bragg reflector microlasers:results from finite difference time domain simulations.Radio Science,1996,31(4):931-941
    [67]S.H.Chang,A.Taflove Finite-difference time-domain model of lasing action in a four-level two-electron atomic system.Optics Express,2004,12(16):3827-3833
    [68]M.Qiu.S.He Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions.Phys.Rev.B.2000,61(19):2871-2876
    [69]R.Hawkins,J.S.Kallman,Lasing in tilted-waveguide semiconductor laser amplifiers.Optical and Quantum Electronics,1994,26(2):S207-S217
    [70]S.C.Hagness,R.M.Joseph,A.Taflove,Subpicosecond electrodynamics of distributed Bragg reflector microlasers:results from finite difference time domain simulations.Radio Science,1996,31(4):931-941
    [71]R.W.Ziolkowski,J.M.Arnold,D.M.Gogny Ultrafast pulse interactions with two-level atom.Phys.Rev.A,1995,52(4):3082-3094
    [72]K.M.Leung,Y.F.Liu.Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media.Phys.Rev.Lett.,1990,65(21):2646-2649.
    [73]Z.Zhang,S.Satpathy.Electro-magnetic wave propagation in periodic structures:Bloch wave solution of maxwell Equations.Phys.Rev.Lett.,1990,65(21):2650-2653.
    [74]K.M.Ho,C.T.Chan,C.M.Soukoulis.Existence of a photonic gap in Periodic dielectric structures.Phys.Rev.Lett.,1990,65(25):3152-3155.
    [75]J.D.Joannopoulos,R.D.Meade,J.N.Winn.Photonic crystals:Molding the flow of light.Princeton Univ.Press,NJ,1995.
    [76]C.M.Soukoulis.Photonic band gap materials,NATO,ASI,(Kluwer,Dordrecht,1996).
    [77]W.C.Sailor,F.M.Mueller,P.R.Villeneuve.Augmented-plane-wave method for photonic band-gap materials.Phys.Rev.B,1998,57(15):8819-8822.
    [78]E.Lidorikis,M.M.Sigalas.Tight-Binding parametrization for photonic band gap materials.Phys.Rev.Lett.,1998,81(7):1405-1408.
    [79]W.H.Butler.One-dimensional model for transition metals and their alloys.Phys.Rev.B,1976,14(2):468-478.
    [80]K.M.Leung,Y.Qiu.Multiple-scattering calculation of the two-dimensional photonic band structure.Phys.Rev.B,1993,48(11):7767-7771.
    [81]L.M.Li,Z.Q.Zhang.Multiple-scattering approach to finite-sized photonic band-gap materials.Phys.Rev.B,1998,58(15):9587-9590.
    [82]G.Tayeb,D.Maystre.Rigorous theeoretical study of finite-size two-dimensional photonic crystals doped by microcavities.J.Opt.Soc,Am,A,1997,14:3323-3332.
    [83]S.John.Strong localization of photons in certain disordered dielectric superlattices.Phys.Rev.Lett.,1987,58(23):2486-2489.
    [84]Ouyang Zheng-biao,LIU Hai-shan,Li Jing-zhen et al.,Photonic crystal super narrow optical filters.Acta.Optica.Sinica,2002,31(2):281-284(in Chinese).
    [85]Chen Haixing,Li Haifeng,Gu Peifu,Liu Xu,Interleaver design based on phase characteristics of Fabry Perot cavity.Acta.Optica.Sinica 2003,23(1):37-40(in Chinese).
    [86]H.Q.Li,G.C.Gu,H.Chen and S.Y.Zhu,Appl.Phys.Lett.1999,74:3260
    [87]周炳琨,高以智,陈倜嵘等.2000激光原理 第四版(北京:国防工业出版社)123-134.
    [88]H.Cao,Y.Ling,J.Y.Xu et al.Probbing localized states with spectrally resolved speckle techniques.Phys Rev E,2002,66(2):R025601-R025604.
    [89]W.Deng,D.S.Wiersma.Coherent backscattering of light from random media within homogeneous gain coefficient.Phys Rev B,1997,56(1):178-181.
    [90]D.S.Wiersma,P.Bartolini,A.Lagendijk,et al.Localization of in a disordered medium.Letters to Nature,1997,399(6661):671-673.
    [91]H.Cao,J.Y.Xu,H.S.Chang,et al.2000 Phys.Rev.E 61:1985-1987.
    [92]Lina Shi,Chengfang Li,Xunya Jiang,Peijun Yao.The spatial coherence properties of the spontaneous emission in the one-dimensional strong random system with gain.Physica E,2007,39:248-252.
    [93]G.Zacharakis,N.A.Papadogiannis and T.G.Papazoglou.Appl.Phys.Lett.2002,81:2511-2513.
    [94]A.L.Burin,M.A.Ratner and H.Cao.IEEE J.Sel.Top.Quantum Electron 2003,9:124-126.
    [95]S-H Chang,H.Cao and S.T.Ho.IEEE J.Quantum Electron.2003,39:364-366
    [96]A.Yamilov and H.Cao 2003 Preprint cond-mat/0209680.
    [97]E.M.Purcell.Spontaneous emission probabilities at radio frequencies.Phys.Rev.1946,69:681-483.
    [98]O.Painter,R.K.Lee,A.Scherer.Two-dimensional photonic band-gap defect mode laser.Science 1999,284:1819
    [99]H.G.Park,S.H.Kim.Science,2004,305:1444
    [100]E.Yablonovitch.Inhibited spontaneous emission in solid-state physics and electronics,Phys.Rev.Lett.,1987,58(20):2059-2063.
    [101]E.Yablonovitch.Photonic band-gap structure.Opt.Soc.Am.B,1993,10(2):283-295.
    [102]J.B.Pendry.Photonic band structure.Mod.Optics,1994,41:209-229
    [103]P.M.Bell,J.B.Pendry,L.Martin-Moreno and A.J.Ward.A program for calculating photonic band structures and transmission coefficient of complex structures.Comp.Phys.Comm.,1995,85:306-318.
    [104]Yablonovitch E.Engineered omni directional external reflectivity spectra from one-dimensional layered interference filters.Opt.Lett.,1998,23(21):1648-1649.
    [105]Qiao Feng,Zhang Chun,Wang Jun.Photonic quantum-well structure:multiple channeled filtering phenomena.Appl.Phys.Lett.,2000,77(23):3698-3700
    [106]S.Y.Zhu,N H Liu,H.Zheng,H.Chen,Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures.Opt.Commu.,2000,174(1-4):139-144
    [107]Yang Yaping,Zhu Shiyiao,Chen Hong,Spontaneous radiation from a two-level atom in photonic crystals with three-dimensional dispersion relation.Physica B,2000,279(1-3):155-158
    [108] J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic crystal: Molding the Flow of Light. 1995 (Princeton, NJ: Princeton University Press)
    [109] K. Sakoda. Optical Properties of Photonic Crystals, 2nd Ed. 2004 (New York: Springer)
    [110] S.Fan, P.R.Vkllenneuve, J.D.Joannopoulos. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett., 1997,78(17): 3294-3297.
    [111] S.L.McCall, P.M.Platzman,et al.. Microwave localization by two-dimensional random scattering.Nature, 1991, 354:53-55.
    [112] S.John, J.Wang. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett., 1990, 64(20):2418-2421.
    [113] E.Yablonovitch, K. M. Leung. Hope for photonic band gaps. Nature, 1991,351 (6324): 278.
    [114] K.M.Ho, C.T.Chan, C.M.Soukoulis, et al.. Photonic band gaps in three dimensions: new layer-by-layer peiodic structures. Solid State Commun., 1994,89(5):413-416.
    [115] E.Ozbay, A.Abeyta, et al.. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys.Rev.B, 1994,50(3):1945-1948.
    [116] S.Fan, P.Vileneuve, R.Meade, et al.. Design of three-dimensional photonic crystals at submicron lengths cales.Appl. Phys .Lett., 1994, 65(11):1466-1468.
    [117] S.Y.Lin, J.G.Fleming, D.L.Hetherington, et al.. A three-dimensional photonic crystal operating at infared wavelengths. Nature ,1998,394:251-253.
    [118] K.Busch, S.John. Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum. Phys.Rev. lett., 1999, 83(5):967-970.
    [119] A.Blanco, E.Chomskl, S.Grabtchak. Large-scale synthesis of a photonic crystal with a complete 3D bandgap bear 1.5 micrometres. Nature, 2000, 405:437-439.
    [120] M.Campbell, D.N.Sharp, M.T.Harrison, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404:53255.
    [121] Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides. Science 2001, 291:1947-1949.
    [122]Z.L.Wang.Zinc oxide nanostructures.Materials Today2004,6:26.
    [123]X.Y.Kong,Y.Ding,R.S.Yang et al.Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts.Science,2004,303:1348.
    [124]Z.L.Wang,J.H.Song.Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays.Science,2006,312:242.
    [125]P.X.Gao,J.H.Song,J.Liu,Z.L.Wang.Adv.Mater.,2007,19:67-72.
    [126]M.Kawasaki,A.Ohtomo,I.Ohkubo et al.Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrystal thin films.Mat Sci & Eng,1998,B56(2-3):239-244.
    [127]X.Q.Zhang,M.Kawasaki,A.Ohtomo et al.Optical gain in self-assembled ZnO microcrysallite thin films,J.Cryst Growth,2003,259(3) 286-290.
    [128]王慧琴,刘正东等.二维随机介质中的能量分布和频谱特性.物理学报,2008,57(9):5550-5557.
    [129]J.D.Joannopoulos,R.D.Meade,J.N.Winn.Photonic crystal:Molding the Flow of Light.1995(Princeton,NJ:Princeton University Press)
    [130]王慧琴,刘正东等.光子晶体对非晶纳米团簇辐射特性的影响[J].物理学报,2009,58(3):1648-1654.
    [131]H.Scherer,D.Gollub,M.Kamp et al.GaAs-based 1.3 mm microlasers with photonic crystal mirrors.J.Vac.Sci.Technol.B,2004,22(6):3344-3347.
    [132]S.H.Kim,H.Y.Ryu,H.G.Park et al.Two-dimensional photonic crystal hexagonal waveguidering laser.Appl.Phys.Lett.,2002,81(14):2499-2501.
    [133]Sun-Kyung Kim,Jee-Hye Lee,Se-Heon Kim et al..Photonic quasi-crystal single-cell cavity mode.Appl.Phys.Lett.,2005,86(3):031101-031103.
    [134]Han-Youl Ryu,Soon-Hong Kwon,Yong-Jae Lee et al.Very low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs.Appl.Phys.Lett.2002,80(19):3476-3478.
    [135]R.Mafouana,J.L.Rehspringer,C.Hirlimann et al.Two-dimensional colloid-based photonic crystals for distributed feedback polymer lasers.Appl.Phys.Lett.2004,85(14):4278-4280.
    [136]M.Huang,S.Mao,H.Feick,H.Yan et al.Room-temperature ultraviolet nanowire nanolasers.Science,2001,292:1897-1899.
    [137]J.Johnson,Kelly P.Knutsen,H.Yan,M.Law,P.Yang,R.Saykally.Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers.Nano.Lett.2004, 4:197.
    [138] Duan, X, Huang Y, Agarwal R. & Lieber C. M. Single nanowire electrically driven lasers. Nature, 2003,421:241-245.
    [139] Z. K. Tang, G. K. L. Wong, P. Yu et al. Room Temeperature ultraviolet laser emission from self assemlbed ZnO miclocrystUiene thin films, Appl.Phys.Lett.1998, 72(25):3270-3272.
    [140] L. Miao, S. Tanemura, Y. Ieda et al. Synthesis, morphology and random laser action of ZnO nanostructures. Surface Science, 2007, 601: 2660-2663
    [141] M. H. Huang, S. Mao, H. Feick et al. Room-Temperature Ultraviolet Nanowire Nanolasers. 292:1897-1899
    [142] Z R Tian, James A.Voigt, Jun Liu, Bonnie Mckenzie,and Matthew Mcdermott. Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns. J.Am.Chem.Soc.2002,124:12954-12955
    [143] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters 83,144-146